These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
852 related articles for article (PubMed ID: 30705340)
1. Multi-Channel 3D Deep Feature Learning for Survival Time Prediction of Brain Tumor Patients Using Multi-Modal Neuroimages. Nie D; Lu J; Zhang H; Adeli E; Wang J; Yu Z; Liu L; Wang Q; Wu J; Shen D Sci Rep; 2019 Jan; 9(1):1103. PubMed ID: 30705340 [TBL] [Abstract][Full Text] [Related]
2. 3D Deep Learning for Multi-modal Imaging-Guided Survival Time Prediction of Brain Tumor Patients. Nie D; Zhang H; Adeli E; Liu L; Shen D Med Image Comput Comput Assist Interv; 2016 Oct; 9901():212-220. PubMed ID: 28149967 [TBL] [Abstract][Full Text] [Related]
3. Structural- and DTI- MRI enable automated prediction of IDH Mutation Status in CNS WHO Grade 2-4 glioma patients: a deep Radiomics Approach. Yuan J; Siakallis L; Li HB; Brandner S; Zhang J; Li C; Mancini L; Bisdas S BMC Med Imaging; 2024 May; 24(1):104. PubMed ID: 38702613 [TBL] [Abstract][Full Text] [Related]
4. Overall survival time prediction for high-grade glioma patients based on large-scale brain functional networks. Liu L; Zhang H; Wu J; Yu Z; Chen X; Rekik I; Wang Q; Lu J; Shen D Brain Imaging Behav; 2019 Oct; 13(5):1333-1351. PubMed ID: 30155788 [TBL] [Abstract][Full Text] [Related]
5. Outcome Prediction for Patient with High-Grade Gliomas from Brain Functional and Structural Networks. Liu L; Zhang H; Rekik I; Chen X; Wang Q; Shen D Med Image Comput Comput Assist Interv; 2016 Oct; 9901():26-34. PubMed ID: 28649677 [TBL] [Abstract][Full Text] [Related]
6. Postoperative glioma segmentation in CT image using deep feature fusion model guided by multi-sequence MRIs. Tang F; Liang S; Zhong T; Huang X; Deng X; Zhang Y; Zhou L Eur Radiol; 2020 Feb; 30(2):823-832. PubMed ID: 31650265 [TBL] [Abstract][Full Text] [Related]
7. Deep Convolutional Radiomic Features on Diffusion Tensor Images for Classification of Glioma Grades. Zhang Z; Xiao J; Wu S; Lv F; Gong J; Jiang L; Yu R; Luo T J Digit Imaging; 2020 Aug; 33(4):826-837. PubMed ID: 32040669 [TBL] [Abstract][Full Text] [Related]
8. Radiomics strategy for glioma grading using texture features from multiparametric MRI. Tian Q; Yan LF; Zhang X; Zhang X; Hu YC; Han Y; Liu ZC; Nan HY; Sun Q; Sun YZ; Yang Y; Yu Y; Zhang J; Hu B; Xiao G; Chen P; Tian S; Xu J; Wang W; Cui GB J Magn Reson Imaging; 2018 Dec; 48(6):1518-1528. PubMed ID: 29573085 [TBL] [Abstract][Full Text] [Related]
9. Deep Transfer Learning and Radiomics Feature Prediction of Survival of Patients with High-Grade Gliomas. Han W; Qin L; Bay C; Chen X; Yu KH; Miskin N; Li A; Xu X; Young G AJNR Am J Neuroradiol; 2020 Jan; 41(1):40-48. PubMed ID: 31857325 [TBL] [Abstract][Full Text] [Related]
10. Optimizing a machine learning based glioma grading system using multi-parametric MRI histogram and texture features. Zhang X; Yan LF; Hu YC; Li G; Yang Y; Han Y; Sun YZ; Liu ZC; Tian Q; Han ZY; Liu LD; Hu BQ; Qiu ZY; Wang W; Cui GB Oncotarget; 2017 Jul; 8(29):47816-47830. PubMed ID: 28599282 [TBL] [Abstract][Full Text] [Related]
11. Machine-learning in grading of gliomas based on multi-parametric magnetic resonance imaging at 3T. Citak-Er F; Firat Z; Kovanlikaya I; Ture U; Ozturk-Isik E Comput Biol Med; 2018 Aug; 99():154-160. PubMed ID: 29933126 [TBL] [Abstract][Full Text] [Related]
12. Radiomics Analysis for Glioma Malignancy Evaluation Using Diffusion Kurtosis and Tensor Imaging. Takahashi S; Takahashi W; Tanaka S; Haga A; Nakamoto T; Suzuki Y; Mukasa A; Takayanagi S; Kitagawa Y; Hana T; Nejo T; Nomura M; Nakagawa K; Saito N Int J Radiat Oncol Biol Phys; 2019 Nov; 105(4):784-791. PubMed ID: 31344432 [TBL] [Abstract][Full Text] [Related]
13. Development and validation of a multi-modality fusion deep learning model for differentiating glioblastoma from solitary brain metastases. Shen S; Li C; Fan Y; Lu S; Yan Z; Liu H; Zhou H; Zhang Z Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2024 Jan; 49(1):58-67. PubMed ID: 38615167 [TBL] [Abstract][Full Text] [Related]
14. Imaging biomarker analysis of advanced multiparametric MRI for glioma grading. Vamvakas A; Williams SC; Theodorou K; Kapsalaki E; Fountas K; Kappas C; Vassiou K; Tsougos I Phys Med; 2019 Apr; 60():188-198. PubMed ID: 30910431 [TBL] [Abstract][Full Text] [Related]
15. Deep Learning and Multi-Sensor Fusion for Glioma Classification Using Multistream 2D Convolutional Networks. Ge C; Gu IY; Jakola AS; Yang J Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5894-5897. PubMed ID: 30441677 [TBL] [Abstract][Full Text] [Related]
17. Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas using conventional and diffusion tensor imaging. Park YW; Oh J; You SC; Han K; Ahn SS; Choi YS; Chang JH; Kim SH; Lee SK Eur Radiol; 2019 Aug; 29(8):4068-4076. PubMed ID: 30443758 [TBL] [Abstract][Full Text] [Related]
18. Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer's Disease Diagnosis. Liu M; Cheng D; Wang K; Wang Y; Neuroinformatics; 2018 Oct; 16(3-4):295-308. PubMed ID: 29572601 [TBL] [Abstract][Full Text] [Related]
19. Applications of radiomics and machine learning for radiotherapy of malignant brain tumors. Kocher M; Ruge MI; Galldiks N; Lohmann P Strahlenther Onkol; 2020 Oct; 196(10):856-867. PubMed ID: 32394100 [TBL] [Abstract][Full Text] [Related]
20. Regression based overall survival prediction of glioblastoma multiforme patients using a single discovery cohort of multi-institutional multi-channel MR images. Sanghani P; Ang BT; King NKK; Ren H Med Biol Eng Comput; 2019 Aug; 57(8):1683-1691. PubMed ID: 31104273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]