These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 30705586)

  • 1. Silver nanoparticles: aggregation behavior in biorelevant conditions and its impact on biological activity.
    Bélteky P; Rónavári A; Igaz N; Szerencsés B; Tóth IY; Pfeiffer I; Kiricsi M; Kónya Z
    Int J Nanomedicine; 2019; 14():667-687. PubMed ID: 30705586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Are Smaller Nanoparticles Always Better? Understanding the Biological Effect of Size-Dependent Silver Nanoparticle Aggregation Under Biorelevant Conditions.
    Bélteky P; Rónavári A; Zakupszky D; Boka E; Igaz N; Szerencsés B; Pfeiffer I; Vágvölgyi C; Kiricsi M; Kónya Z
    Int J Nanomedicine; 2021; 16():3021-3040. PubMed ID: 33935497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyvinyl-Pyrrolidone-Coated Silver Nanoparticles-The Colloidal, Chemical, and Biological Consequences of Steric Stabilization under Biorelevant Conditions.
    Rónavári A; Bélteky P; Boka E; Zakupszky D; Igaz N; Szerencsés B; Pfeiffer I; Kónya Z; Kiricsi M
    Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological activity of green-synthesized silver nanoparticles depends on the applied natural extracts: a comprehensive study.
    Rónavári A; Kovács D; Igaz N; Vágvölgyi C; Boros IM; Kónya Z; Pfeiffer I; Kiricsi M
    Int J Nanomedicine; 2017; 12():871-883. PubMed ID: 28184158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on aggregation behavior of Cytochrome C-conjugated silver nanoparticles using asymmetrical flow field-flow fractionation.
    Kim ST; Lee YJ; Hwang YS; Lee S
    Talanta; 2015 Jan; 132():939-44. PubMed ID: 25476400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ultrastable conjugate of silver nanoparticles and protein formed through weak interactions.
    Brahmkhatri VP; Chandra K; Dubey A; Atreya HS
    Nanoscale; 2015 Aug; 7(30):12921-31. PubMed ID: 26166696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Green synthesis of silver nanoparticles using cranberry powder aqueous extract: characterization and antimicrobial properties.
    Ashour AA; Raafat D; El-Gowelli HM; El-Kamel AH
    Int J Nanomedicine; 2015; 10():7207-21. PubMed ID: 26664112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tangential flow ultrafiltration: a "green" method for the size selection and concentration of colloidal silver nanoparticles.
    Anders CB; Baker JD; Stahler AC; Williams AJ; Sisco JN; Trefry JC; Wooley DP; Pavel Sizemore IE
    J Vis Exp; 2012 Oct; (68):. PubMed ID: 23070148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-fabrication of silver nanoparticles using the leaf extract of an ancient herbal medicine, dandelion (Taraxacum officinale), evaluation of their antioxidant, anticancer potential, and antimicrobial activity against phytopathogens.
    Saratale RG; Benelli G; Kumar G; Kim DS; Saratale GD
    Environ Sci Pollut Res Int; 2018 Apr; 25(11):10392-10406. PubMed ID: 28699009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Citrate-capped silver nanoparticles as a probe for sensitive and selective colorimetric and spectrophotometric sensing of creatinine in human urine.
    Alula MT; Karamchand L; Hendricks NR; Blackburn JM
    Anal Chim Acta; 2018 May; 1007():40-49. PubMed ID: 29405987
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibacterial activity of biogenic silver and gold nanoparticles synthesized from Salvia africana-lutea and Sutherlandia frutescens.
    Dube P; Meyer S; Madiehe A; Meyer M
    Nanotechnology; 2020 Dec; 31(50):505607. PubMed ID: 33021215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photocatalytic, antimicrobial activities of biogenic silver nanoparticles and electrochemical degradation of water soluble dyes at glassy carbon/silver modified past electrode using buffer solution.
    Khan ZU; Khan A; Shah A; Chen Y; Wan P; Khan AU; Tahir K; Muhamma N; Khan FU; Shah HU
    J Photochem Photobiol B; 2016 Mar; 156():100-7. PubMed ID: 26874611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Particle coating-dependent interaction of molecular weight fractionated natural organic matter: impacts on the aggregation of silver nanoparticles.
    Yin Y; Shen M; Tan Z; Yu S; Liu J; Jiang G
    Environ Sci Technol; 2015 Jun; 49(11):6581-9. PubMed ID: 25941838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective killing of bacteria under blue-light irradiation promoted by green synthesized silver nanoparticles loaded on reduced graphene oxide sheets.
    Caires CSA; Farias LAS; Gomes LE; Pinto BP; Gonçalves DA; Zagonel LF; Nascimento VA; Alves DCB; Colbeck I; Whitby C; Caires ARL; Wender H
    Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():110984. PubMed ID: 32487400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave-assisted rapid synthesis of silver nanoparticles using fucoidan: Characterization with assessment of biocompatibility and antimicrobial activity.
    Rao SS; Saptami K; Venkatesan J; Rekha PD
    Int J Biol Macromol; 2020 Nov; 163():745-755. PubMed ID: 32599248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Green Synthesis, Characterization, Enzyme Inhibition, Antimicrobial Potential, and Cytotoxic Activity of Plant Mediated Silver Nanoparticle Using
    Gul A; Fozia ; Shaheen A; Ahmad I; Khattak B; Ahmad M; Ullah R; Bari A; Ali SS; Alobaid A; Asmari MM; Mahmood HM
    Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33540690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Green Synthesis of Silver Nanoparticles Using Parthenium Hysterophorus: Optimization, Characterization and In Vitro Therapeutic Evaluation.
    Ahsan A; Farooq MA; Ahsan Bajwa A; Parveen A
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32707950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile synthesis of mPEG-luteolin-capped silver nanoparticles with antimicrobial activity and cytotoxicity to neuroblastoma SK-N-SH cells.
    Qing W; Wang Y; Li X; Lu M; Liu X
    Colloids Surf B Biointerfaces; 2017 Dec; 160():390-394. PubMed ID: 28965078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic functionalization of cork surface with antimicrobial hybrid biopolymer/silver nanoparticles.
    Francesko A; Blandón L; Vázquez M; Petkova P; Morató J; Pfeifer A; Heinze T; Mendoza E; Tzanov T
    ACS Appl Mater Interfaces; 2015 May; 7(18):9792-9. PubMed ID: 25894699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles.
    Fernando I; Zhou Y
    Chemosphere; 2019 Feb; 216():297-305. PubMed ID: 30384298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.