BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 30705645)

  • 1. EEG 40 Hz Coherence Decreases in REM Sleep and Ketamine Model of Psychosis.
    Castro-Zaballa S; Cavelli ML; Gonzalez J; Nardi AE; Machado S; Scorza C; Torterolo P
    Front Psychiatry; 2018; 9():766. PubMed ID: 30705645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent neocortical 40-Hz oscillations are not present during REM sleep.
    Castro S; Falconi A; Chase MH; Torterolo P
    Eur J Neurosci; 2013 Apr; 37(8):1330-9. PubMed ID: 23406153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inter-hemispheric coherence of neocortical gamma oscillations during sleep and wakefulness.
    Castro S; Cavelli M; Vollono P; Chase MH; Falconi A; Torterolo P
    Neurosci Lett; 2014 Aug; 578():197-202. PubMed ID: 24993304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EEG dissociation induced by muscarinic receptor antagonists: Coherent 40 Hz oscillations in a background of slow waves and spindles.
    Castro-Zaballa S; Cavelli M; González J; Monti J; Falconi A; Torterolo P
    Behav Brain Res; 2019 Feb; 359():28-37. PubMed ID: 30321557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coherent neocortical gamma oscillations decrease during REM sleep in the rat.
    Cavelli M; Castro S; Schwarzkopf N; Chase MH; Falconi A; Torterolo P
    Behav Brain Res; 2015 Mar; 281():318-25. PubMed ID: 25557796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neocortical 40 Hz oscillations during carbachol-induced rapid eye movement sleep and cataplexy.
    Torterolo P; Castro-Zaballa S; Cavelli M; Chase MH; Falconi A
    Eur J Neurosci; 2016 Feb; 43(4):580-9. PubMed ID: 26670051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Power and coherence of cortical high-frequency oscillations during wakefulness and sleep.
    Cavelli M; Rojas-Líbano D; Schwarzkopf N; Castro-Zaballa S; Gonzalez J; Mondino A; Santana N; Benedetto L; Falconi A; Torterolo P
    Eur J Neurosci; 2018 Oct; 48(8):2728-2737. PubMed ID: 28922535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistical, spectral and non-linear analysis of the heart rate variability during wakefulness and sleep.
    Brando V; Castro-Zaballa S; Falconi A; Torterolo P; Migliaro ER
    Arch Ital Biol; 2014 Mar; 152(1):32-46. PubMed ID: 25181595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ketamine supresses REM sleep and markedly increases EEG gamma oscillations in the Wistar Kyoto rat model of treatment-resistant depression.
    Kantor S; Lanigan M; Giggins L; Lione L; Magomedova L; de Lannoy I; Upton N; Duxon M
    Behav Brain Res; 2023 Jul; 449():114473. PubMed ID: 37146722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. State-dependent increase of cortical gamma activity during REM sleep after selective blockade of NR2B subunit containing NMDA receptors.
    Kocsis B
    Sleep; 2012 Jul; 35(7):1011-6. PubMed ID: 22754048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced slow-wave activity within NREM sleep in the cortical and subcortical EEG of the cat after sleep deprivation.
    Lancel M; van Riezen H; Glatt A
    Sleep; 1992 Apr; 15(2):102-18. PubMed ID: 1579784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapastinel, an NMDAR positive modulator, produces distinct behavioral, sleep, and EEG profiles compared with ketamine.
    Banerjee P; Donello JE; Hare B; Duman RS
    Behav Brain Res; 2020 Aug; 391():112706. PubMed ID: 32461133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of sleep deprivation in humans: topographical electroencephalogram changes in non-rapid eye movement (NREM) sleep versus REM sleep.
    Marzano C; Ferrara M; Curcio G; De Gennaro L
    J Sleep Res; 2010 Jun; 19(2):260-8. PubMed ID: 19845849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholinergic regulation of the central nucleus of the amygdala in rats: effects of local microinjections of cholinomimetics and cholinergic antagonists on arousal and sleep.
    Sanford LD; Yang L; Tang X; Dong E; Ross RJ; Morrison AR
    Neuroscience; 2006 Sep; 141(4):2167-76. PubMed ID: 16843604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroencephalographic and autonomic alterations in subjects with frequent nightmares during pre-and post-REM periods.
    Simor P; Körmendi J; Horváth K; Gombos F; Ujma PP; Bódizs R
    Brain Cogn; 2014 Nov; 91():62-70. PubMed ID: 25238622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-frequency gamma electroencephalogram activity in association with sleep-wake states and spontaneous behaviors in the rat.
    Maloney KJ; Cape EG; Gotman J; Jones BE
    Neuroscience; 1997 Jan; 76(2):541-55. PubMed ID: 9015337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lesion of the pedunculopontine tegmental nucleus in rat augments cortical activation and disturbs sleep/wake state transitions structure.
    Petrovic J; Ciric J; Lazic K; Kalauzi A; Saponjic J
    Exp Neurol; 2013 Sep; 247():562-71. PubMed ID: 23481548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nasal respiration entrains neocortical long-range gamma coherence during wakefulness.
    Cavelli M; Castro-Zaballa S; Gonzalez J; Rojas-Líbano D; Rubido N; Velásquez N; Torterolo P
    Eur J Neurosci; 2020 Mar; 51(6):1463-1477. PubMed ID: 31454438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-methyl d-aspartate receptor antagonists ketamine and MK-801 induce wake-related aberrant gamma oscillations in the rat neocortex.
    Pinault D
    Biol Psychiatry; 2008 Apr; 63(8):730-5. PubMed ID: 18022604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human Rapid Eye Movement Sleep Shows Local Increases in Low-Frequency Oscillations and Global Decreases in High-Frequency Oscillations Compared to Resting Wakefulness.
    Baird B; Castelnovo A; Riedner BA; Lutz A; Ferrarelli F; Boly M; Davidson RJ; Tononi G
    eNeuro; 2018; 5(4):. PubMed ID: 30225358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.