These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30705986)

  • 1. Performance of a modified magnetostrictive energy harvester in mechanical vibration.
    Dey S; Roy D; Patra S; Santra T
    Heliyon; 2019 Jan; 5(1):e01135. PubMed ID: 30705986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of the Key Factors Affecting the Capability and Optimization for Magnetostrictive Iron-Gallium Alloy Ambient Vibration Harvesters.
    Liu H; Cong C; Cao C; Zhao Q
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Working characteristics of a magnetostrictive vibration energy harvester for rotating car wheels.
    Liu H; Dong W; Chang Y; Gao Y; Li W
    Rev Sci Instrum; 2022 May; 93(5):055001. PubMed ID: 35649761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive Analysis of the Energy Harvesting Performance of a Fe-Ga Based Cantilever Harvester in Free Excitation and Base Excitation Mode.
    Liu H; Cong C; Zhao Q; Ma K
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband Vibration-Based Energy Harvesting for Wireless Sensor Applications Using Frequency Upconversion.
    Li J; Ouro-Koura H; Arnow H; Nowbahari A; Galarza M; Obispo M; Tong X; Azadmehr M; Halvorsen E; Hella MM; Tichy JA; Borca-Tasciuc DA
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Piezoelectric Energy Harvesting from Low-Frequency Vibrations Based on Magnetic Plucking and Indirect Impacts.
    Rosso M; Nastro A; Baù M; Ferrari M; Ferrari V; Corigliano A; Ardito R
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering new limits to magnetostriction through metastability in iron-gallium alloys.
    Meisenheimer PB; Steinhardt RA; Sung SH; Williams LD; Zhuang S; Nowakowski ME; Novakov S; Torunbalci MM; Prasad B; Zollner CJ; Wang Z; Dawley NM; Schubert J; Hunter AH; Manipatruni S; Nikonov DE; Young IA; Chen LQ; Bokor J; Bhave SA; Ramesh R; Hu JM; Kioupakis E; Hovden R; Schlom DG; Heron JT
    Nat Commun; 2021 May; 12(1):2757. PubMed ID: 33980848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Vibration Energy Harvester and Power Management Solution for Battery-Free Operation of Wireless Sensor Nodes.
    Rodriguez JC; Nico V; Punch J
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31480410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the Possibility of Developing Magnetostrictive Fe-Co/Ni Clad Plate with Both Vibration Energy Harvesting and Mass Sensing Elements.
    Mori K; Wang Y; Katabira K; Neyama D; Onodera R; Chiba D; Watanabe M; Narita F
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of Fe-Co Magnetostrictive Fiber Reinforced Plastic Composites and Their Sensor Performance Evaluation.
    Katabira K; Yoshida Y; Masuda A; Watanabe A; Narita F
    Materials (Basel); 2018 Mar; 11(3):. PubMed ID: 29522455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electric Power Self-Supply Module for WSN Sensor Node Based on MEMS Vibration Energy Harvester.
    Zhang W; Dong Y; Tan Y; Zhang M; Qian X; Wang X
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Universal Multienergy Harvester Architecture.
    Sriramdas R; Yang D; Kang MG; Sanghadasa M; Priya S
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):324-331. PubMed ID: 33372751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving Energy Harvesting from Bridge Vibration Excited by Moving Vehicles with a Bi-Stable Harvester.
    Zhou Z; Zhang H; Qin W; Zhu P; Du W
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large Nonhysteretic Volume Magnetostriction in a Strong and Ductile High-Entropy Alloy.
    Gou J; Pan Y; Yang T; Liu Y; Liu G; Chen Y; Zhang C; Li H; Lv B; Liu C; Xia W; Ma T
    Adv Mater; 2024 Jun; ():e2404192. PubMed ID: 38925664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peculiarities of the third natural frequency vibrations of a cantilever for the improvement of energy harvesting.
    Ostasevicius V; Janusas G; Milasauskaite I; Zilys M; Kizauskiene L
    Sensors (Basel); 2015 May; 15(6):12594-612. PubMed ID: 26029948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multimodal MEMS vibration energy harvester with cascaded flexible and silicon beams for ultralow frequency response.
    Feng H; Bu L; Li Z; Xu S; Hu B; Xu M; Jiang S; Wang X
    Microsyst Nanoeng; 2023; 9():33. PubMed ID: 36969966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic Electromagnetic Energy Harvester for Railway Applications-Development and Test with Wireless Sensor.
    Hadas Z; Rubes O; Ksica F; Chalupa J
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency.
    Zhang Y; Wang T; Zhang A; Peng Z; Luo D; Chen R; Wang F
    Rev Sci Instrum; 2016 Dec; 87(12):125001. PubMed ID: 28040962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid Vibration Energy Harvesting Device Using Ferrofluids.
    Hannon N; Harrison CW; Kraśny MJ; Zabek D
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double-Deck Metal Solenoids 3D Integrated in Silicon Wafer for Kinetic Energy Harvester.
    Wang N; Han R; Chen C; Gu J; Li X
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33445444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.