These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 30706213)
1. Predicting Breast Cancer Molecular Subtype with MRI Dataset Utilizing Convolutional Neural Network Algorithm. Ha R; Mutasa S; Karcich J; Gupta N; Pascual Van Sant E; Nemer J; Sun M; Chang P; Liu MZ; Jambawalikar S J Digit Imaging; 2019 Apr; 32(2):276-282. PubMed ID: 30706213 [TBL] [Abstract][Full Text] [Related]
2. Fully Automated Convolutional Neural Network Method for Quantification of Breast MRI Fibroglandular Tissue and Background Parenchymal Enhancement. Ha R; Chang P; Mema E; Mutasa S; Karcich J; Wynn RT; Liu MZ; Jambawalikar S J Digit Imaging; 2019 Feb; 32(1):141-147. PubMed ID: 30076489 [TBL] [Abstract][Full Text] [Related]
4. A novel CNN algorithm for pathological complete response prediction using an I-SPY TRIAL breast MRI database. Liu MZ; Mutasa S; Chang P; Siddique M; Jambawalikar S; Ha R Magn Reson Imaging; 2020 Nov; 73():148-151. PubMed ID: 32889091 [TBL] [Abstract][Full Text] [Related]
5. Prior to Initiation of Chemotherapy, Can We Predict Breast Tumor Response? Deep Learning Convolutional Neural Networks Approach Using a Breast MRI Tumor Dataset. Ha R; Chin C; Karcich J; Liu MZ; Chang P; Mutasa S; Pascual Van Sant E; Wynn RT; Connolly E; Jambawalikar S J Digit Imaging; 2019 Oct; 32(5):693-701. PubMed ID: 30361936 [TBL] [Abstract][Full Text] [Related]
6. Convolutional Neural Network Based Breast Cancer Risk Stratification Using a Mammographic Dataset. Ha R; Chang P; Karcich J; Mutasa S; Pascual Van Sant E; Liu MZ; Jambawalikar S Acad Radiol; 2019 Apr; 26(4):544-549. PubMed ID: 30072292 [TBL] [Abstract][Full Text] [Related]
7. Convolutional Neural Network Using a Breast MRI Tumor Dataset Can Predict Oncotype Dx Recurrence Score. Ha R; Chang P; Mutasa S; Karcich J; Goodman S; Blum E; Kalinsky K; Liu MZ; Jambawalikar S J Magn Reson Imaging; 2019 Feb; 49(2):518-524. PubMed ID: 30129697 [TBL] [Abstract][Full Text] [Related]
8. Predicting Post Neoadjuvant Axillary Response Using a Novel Convolutional Neural Network Algorithm. Ha R; Chang P; Karcich J; Mutasa S; Van Sant EP; Connolly E; Chin C; Taback B; Liu MZ; Jambawalikar S Ann Surg Oncol; 2018 Oct; 25(10):3037-3043. PubMed ID: 29978368 [TBL] [Abstract][Full Text] [Related]
9. Potential Role of Convolutional Neural Network Based Algorithm in Patient Selection for DCIS Observation Trials Using a Mammogram Dataset. Mutasa S; Chang P; Van Sant EP; Nemer J; Liu M; Karcich J; Patel G; Jambawalikar S; Ha R Acad Radiol; 2020 Jun; 27(6):774-779. PubMed ID: 31526687 [TBL] [Abstract][Full Text] [Related]
10. Computational approach to radiogenomics of breast cancer: Luminal A and luminal B molecular subtypes are associated with imaging features on routine breast MRI extracted using computer vision algorithms. Grimm LJ; Zhang J; Mazurowski MA J Magn Reson Imaging; 2015 Oct; 42(4):902-7. PubMed ID: 25777181 [TBL] [Abstract][Full Text] [Related]
11. Efficient estimation of pharmacokinetic parameters from breast dynamic contrast-enhanced MRI based on a convolutional neural network for predicting molecular subtypes. Zhang L; Fan M; Li L Phys Med Biol; 2023 Dec; 68(24):. PubMed ID: 37983902 [No Abstract] [Full Text] [Related]
12. Radiomic versus Convolutional Neural Networks Analysis for Classification of Contrast-enhancing Lesions at Multiparametric Breast MRI. Truhn D; Schrading S; Haarburger C; Schneider H; Merhof D; Kuhl C Radiology; 2019 Feb; 290(2):290-297. PubMed ID: 30422086 [TBL] [Abstract][Full Text] [Related]
13. Task-based assessment of a convolutional neural network for segmenting breast lesions for radiomic analysis. Spuhler KD; Ding J; Liu C; Sun J; Serrano-Sosa M; Moriarty M; Huang C Magn Reson Med; 2019 Aug; 82(2):786-795. PubMed ID: 30957936 [TBL] [Abstract][Full Text] [Related]
14. Radiomic analysis reveals DCE-MRI features for prediction of molecular subtypes of breast cancer. Fan M; Li H; Wang S; Zheng B; Zhang J; Li L PLoS One; 2017; 12(2):e0171683. PubMed ID: 28166261 [TBL] [Abstract][Full Text] [Related]
15. A Deep Learning Model for Predicting Molecular Subtype of Breast Cancer by Fusing Multiple Sequences of DCE-MRI From Two Institutes. Xie X; Zhou H; Ma M; Nie J; Gao W; Zhong J; Cao X; He X; Peng J; Hou Y; Zhao F; Chen X Acad Radiol; 2024 Sep; 31(9):3479-3488. PubMed ID: 38637240 [TBL] [Abstract][Full Text] [Related]
16. Classification of Mammogram Images Using Multiscale all Convolutional Neural Network (MA-CNN). Agnes SA; Anitha J; Pandian SIA; Peter JD J Med Syst; 2019 Dec; 44(1):30. PubMed ID: 31838610 [TBL] [Abstract][Full Text] [Related]
17. Relationships Between MRI Breast Imaging-Reporting and Data System (BI-RADS) Lexicon Descriptors and Breast Cancer Molecular Subtypes: Internal Enhancement is Associated with Luminal B Subtype. Grimm LJ; Zhang J; Baker JA; Soo MS; Johnson KS; Mazurowski MA Breast J; 2017 Sep; 23(5):579-582. PubMed ID: 28295860 [TBL] [Abstract][Full Text] [Related]
18. Computer-aided diagnosis of prostate cancer on magnetic resonance imaging using a convolutional neural network algorithm. Ishioka J; Matsuoka Y; Uehara S; Yasuda Y; Kijima T; Yoshida S; Yokoyama M; Saito K; Kihara K; Numao N; Kimura T; Kudo K; Kumazawa I; Fujii Y BJU Int; 2018 Sep; 122(3):411-417. PubMed ID: 29772101 [TBL] [Abstract][Full Text] [Related]
19. Prediction of breast cancer molecular subtypes using DCE-MRI based on CNNs combined with ensemble learning. Sun R; Meng Z; Hou X; Chen Y; Yang Y; Huang G; Nie S Phys Med Biol; 2021 Aug; 66(17):. PubMed ID: 34330117 [TBL] [Abstract][Full Text] [Related]
20. Prediction of breast cancer molecular subtypes on DCE-MRI using convolutional neural network with transfer learning between two centers. Zhang Y; Chen JH; Lin Y; Chan S; Zhou J; Chow D; Chang P; Kwong T; Yeh DC; Wang X; Parajuli R; Mehta RS; Wang M; Su MY Eur Radiol; 2021 Apr; 31(4):2559-2567. PubMed ID: 33001309 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]