These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 30706416)
21. Production of polyhydroxyalkanoates in open, mixed cultures from a waste sludge stream containing high levels of soluble organics, nitrogen and phosphorus. Morgan-Sagastume F; Karlsson A; Johansson P; Pratt S; Boon N; Lant P; Werker A Water Res; 2010 Oct; 44(18):5196-211. PubMed ID: 20638096 [TBL] [Abstract][Full Text] [Related]
22. Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria. Nikodinovic-Runic J; Guzik M; Kenny ST; Babu R; Werker A; O Connor KE Adv Appl Microbiol; 2013; 84():139-200. PubMed ID: 23763760 [TBL] [Abstract][Full Text] [Related]
23. Production of polyhydroxyalkanoates by activated sludge treating a paper mill wastewater. Bengtsson S; Werker A; Christensson M; Welander T Bioresour Technol; 2008 Feb; 99(3):509-16. PubMed ID: 17360180 [TBL] [Abstract][Full Text] [Related]
24. Strategies for efficiently selecting PHA producing mixed microbial cultures using complex feedstocks: Feast and famine regime and uncoupled carbon and nitrogen availabilities. Oliveira CS; Silva CE; Carvalho G; Reis MA N Biotechnol; 2017 Jul; 37(Pt A):69-79. PubMed ID: 27793692 [TBL] [Abstract][Full Text] [Related]
25. Polyhydroxyalkanoate synthesis based on glycerol and implementation of the process under conditions of pilot production. Volova T; Demidenko A; Kiselev E; Baranovskiy S; Shishatskaya E; Zhila N Appl Microbiol Biotechnol; 2019 Jan; 103(1):225-237. PubMed ID: 30367183 [TBL] [Abstract][Full Text] [Related]
26. Production of polyhydroxyalkanoates (PHA) by bacterial consortium from excess sludge fermentation liquid at laboratory and pilot scales. Jia Q; Xiong H; Wang H; Shi H; Sheng X; Sun R; Chen G Bioresour Technol; 2014 Nov; 171():159-67. PubMed ID: 25194265 [TBL] [Abstract][Full Text] [Related]
27. Production of filmable medium-chain-length polyhydroxyalkanoates produced from glycerol by Pseudomonas mediterranea. Pappalardo F; Fragalà M; Mineo PG; Damigella A; Catara AF; Palmeri R; Rescifina A Int J Biol Macromol; 2014 Apr; 65():89-96. PubMed ID: 24418340 [TBL] [Abstract][Full Text] [Related]
28. Effect of polyhydroxyalkanoates on dark fermentative hydrogen production from waste activated sludge. Wang D; Zeng G; Chen Y; Li X Water Res; 2015 Apr; 73():311-22. PubMed ID: 25697693 [TBL] [Abstract][Full Text] [Related]
29. Selecting optimal feast-to-famine ratio for a new polyhydroxyalkanoate (PHA) production system fed by valerate-dominant sludge hydrolysate. Hao J; Wang H; Wang X Appl Microbiol Biotechnol; 2018 Apr; 102(7):3133-3143. PubMed ID: 29487986 [TBL] [Abstract][Full Text] [Related]
30. Changes in microbial community structure during adaptation towards polyhydroxyalkanoates production. Ciesielski S; Klimiuk E; Mozejko J; Nowakowska E; Pokój T Pol J Microbiol; 2009; 58(2):131-9. PubMed ID: 19824397 [TBL] [Abstract][Full Text] [Related]
31. Dynamic synthesis of polyhydroxyalkanoates by bacterial consortium from simulated excess sludge fermentation liquid. Jia Q; Wang H; Wang X Bioresour Technol; 2013 Jul; 140():328-36. PubMed ID: 23711941 [TBL] [Abstract][Full Text] [Related]
32. Segregated flux balance analysis constrained by population structure/function data: the case of PHA production by mixed microbial cultures. Pardelha F; Albuquerque MG; Carvalho G; Reis MA; Dias JM; Oliveira R Biotechnol Bioeng; 2013 Aug; 110(8):2267-76. PubMed ID: 23475571 [TBL] [Abstract][Full Text] [Related]
33. Simultaneous Biosynthesis of Polyhydroxyalkanoates and Extracellular Polymeric Substance (EPS) from Crude Glycerol from Biodiesel Production by Different Bacterial Strains. de Jesus Assis D; Gomes GV; da Cunha Pascoal DR; Pinho LS; Chaves LB; Druzian JI Appl Biochem Biotechnol; 2016 Nov; 180(6):1110-1127. PubMed ID: 27357823 [TBL] [Abstract][Full Text] [Related]
34. Polyhydroxyalkanoates (PHA) production from phenol in an acclimated consortium: Batch study and impacts of operational conditions. Zhang Y; Wusiman A; Liu X; Wan C; Lee DJ; Tay J J Biotechnol; 2018 Feb; 267():36-44. PubMed ID: 29305323 [TBL] [Abstract][Full Text] [Related]
35. The role of dissolved oxygen content as a modulator of microbial polyhydroxyalkanoate synthesis. Blunt W; Sparling R; Gapes DJ; Levin DB; Cicek N World J Microbiol Biotechnol; 2018 Jul; 34(8):106. PubMed ID: 29971506 [TBL] [Abstract][Full Text] [Related]
36. Effect of nitrogen limitation on enrichment of activated sludge for PHA production. Basak B; Ince O; Artan N; Yagci N; Ince BK Bioprocess Biosyst Eng; 2011 Oct; 34(8):1007-16. PubMed ID: 21643976 [TBL] [Abstract][Full Text] [Related]
37. Response of a three-stage process for PHA production by mixed microbial cultures to feedstock shift: impact on polymer composition. Duque AF; Oliveira CS; Carmo IT; Gouveia AR; Pardelha F; Ramos AM; Reis MA N Biotechnol; 2014 Jun; 31(4):276-88. PubMed ID: 24211366 [TBL] [Abstract][Full Text] [Related]
38. A techno-economic analysis of polyhydroxyalkanoate and hydrogen production from syngas fermentation of gasified biomass. Choi D; Chipman DC; Bents SC; Brown RC Appl Biochem Biotechnol; 2010 Feb; 160(4):1032-46. PubMed ID: 19247588 [TBL] [Abstract][Full Text] [Related]
39. Improving polyhydroxyalkanoates production in phototrophic mixed cultures by optimizing accumulator reactor operating conditions. Fradinho JC; Oehmen A; Reis MAM Int J Biol Macromol; 2019 Apr; 126():1085-1092. PubMed ID: 30610947 [TBL] [Abstract][Full Text] [Related]
40. Trends in the biomanufacture of polyhydroxyalkanoates with focus on downstream processing. Kosseva MR; Rusbandi E Int J Biol Macromol; 2018 Feb; 107(Pt A):762-778. PubMed ID: 28928063 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]