These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 30706475)

  • 1. Brownian motion and Einstein relation for migration of coffee particles in coffee suspensions.
    Lin CY; Zhou W; Hu CT; Yang F; Lee S
    J Sci Food Agric; 2019 Jun; 99(8):3950-3956. PubMed ID: 30706475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model for particle migration in bidisperse suspensions by use of effective temperature.
    Vollebregt HM; van der Sman RG; Boom RM
    Faraday Discuss; 2012; 158():89-103; discussion 105-24. PubMed ID: 23234163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct numerical simulations for non-Newtonian rheology of concentrated particle dispersions.
    Iwashita T; Yamamoto R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061402. PubMed ID: 20365170
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sticky, active microrheology: Part 1. Linear-response.
    Huang DE; Zia RN
    J Colloid Interface Sci; 2019 Oct; 554():580-591. PubMed ID: 31326790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient lattice Boltzmann algorithm for Brownian suspensions.
    Mynam M; Sunthar P; Ansumali S
    Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1944):2237-45. PubMed ID: 21536570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheology of non-Brownian suspensions.
    Denn MM; Morris JF
    Annu Rev Chem Biomol Eng; 2014; 5():203-28. PubMed ID: 24655134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brownian motion in inhomogeneous suspensions.
    Yang M; Ripoll M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062110. PubMed ID: 23848630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hot brownian particles and photothermal correlation spectroscopy.
    Radünz R; Rings D; Kroy K; Cichos F
    J Phys Chem A; 2009 Mar; 113(9):1674-7. PubMed ID: 19209897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of the solid and liquid phases in dilute sheared Brownian suspensions: irreversibility and particle migration.
    Brown JR; Seymour JD; Codd SL; Fridjonsson EO; Cokelet GR; Nydén M
    Phys Rev Lett; 2007 Dec; 99(24):240602. PubMed ID: 18233432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shear thickening and migration in granular suspensions.
    Fall A; Lemaître A; Bertrand F; Bonn D; Ovarlez G
    Phys Rev Lett; 2010 Dec; 105(26):268303. PubMed ID: 21231719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rheological study of two-dimensional very anisometric colloidal particle suspensions: from shear-induced orientation to viscous dissipation.
    Philippe AM; Baravian C; Bezuglyy V; Angilella JR; Meneau F; Bihannic I; Michot LJ
    Langmuir; 2013 Apr; 29(17):5315-24. PubMed ID: 23544905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient binding accounts for apparent violation of the generalized Stokes-Einstein relation in crowded protein solutions.
    Rothe M; Gruber T; Gröger S; Balbach J; Saalwächter K; Roos M
    Phys Chem Chem Phys; 2016 Jul; 18(27):18006-14. PubMed ID: 27326536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward a nonequilibrium Stokes-Einstein relation via active microrheology of hydrodynamically interacting colloidal dispersions.
    Chu HCW; Zia RN
    J Colloid Interface Sci; 2019 Mar; 539():388-399. PubMed ID: 30597285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viscosity measurements of water at high temperatures and pressures using dynamic light scattering.
    Deguchi S; Ghosh SK; Alargova RG; Tsujii K
    J Phys Chem B; 2006 Sep; 110(37):18358-62. PubMed ID: 16970458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective temperatures and the breakdown of the Stokes-Einstein relation for particle suspensions.
    Mendoza CI; Santamaría-Holek I; Pérez-Madrid A
    J Chem Phys; 2015 Sep; 143(10):104506. PubMed ID: 26374049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interplay of particle shape and suspension properties: a study of cube-like particles.
    Audus DJ; Hassan AM; Garboczi EJ; Douglas JF
    Soft Matter; 2015 May; 11(17):3360-6. PubMed ID: 25797369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscoelasticity of model interphase chromosomes.
    Valet M; Rosa A
    J Chem Phys; 2014 Dec; 141(24):245101. PubMed ID: 25554185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic mechanical properties of suspensions of micellar casein particles.
    Panouillé M; Benyahia L; Durand D; Nicolai T
    J Colloid Interface Sci; 2005 Jul; 287(2):468-75. PubMed ID: 15925612
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extraction of espresso coffee by using gradient of temperature. Effect on physicochemical and sensorial characteristics of espresso.
    Salamanca CA; Fiol N; González C; Saez M; Villaescusa I
    Food Chem; 2017 Jan; 214():622-630. PubMed ID: 27507518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low viscosity highly concentrated injectable nonaqueous suspensions of lysozyme microparticles.
    Miller MA; Engstrom JD; Ludher BS; Johnston KP
    Langmuir; 2010 Jan; 26(2):1067-74. PubMed ID: 19803503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.