These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 30706482)

  • 1. Leucine, Palmitate, or Leucine/Palmitate Cotreatment Enhances Myotube Lipid Content and Oxidative Preference.
    Johnson MA; Gannon NP; Schnuck JK; Lyon ES; Sunderland KL; Vaughan RA
    Lipids; 2018 Nov; 53(11-12):1043-1057. PubMed ID: 30706482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leucine increases mitochondrial metabolism and lipid content without altering insulin signaling in myotubes.
    Rivera ME; Lyon ES; Johnson MA; Vaughan RA
    Biochimie; 2020 Jan; 168():124-133. PubMed ID: 31682874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excess branched-chain amino acids alter myotube metabolism and substrate preference which is worsened by concurrent insulin resistance.
    Rivera ME; Rivera CN; Vaughan RA
    Endocrine; 2022 Apr; 76(1):18-28. PubMed ID: 34811646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acute β-Hydroxy-β-Methyl Butyrate Suppresses Regulators of Mitochondrial Biogenesis and Lipid Oxidation While Increasing Lipid Content in Myotubes.
    Schnuck JK; Johnson MA; Gould LM; Gannon NP; Vaughan RA
    Lipids; 2016 Oct; 51(10):1127-1136. PubMed ID: 27600148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of metformin on myotube BCAA catabolism.
    Rivera ME; Lyon ES; Vaughan RA
    J Cell Biochem; 2020 Jan; 121(1):816-827. PubMed ID: 31385363
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AICAR stimulates mitochondrial biogenesis and BCAA catabolic enzyme expression in C2C12 myotubes.
    Hinkle JS; Rivera CN; Vaughan RA
    Biochimie; 2022 Apr; 195():77-85. PubMed ID: 34798200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Leucine treatment enhances oxidative capacity through complete carbohydrate oxidation and increased mitochondrial density in skeletal muscle cells.
    Vaughan RA; Garcia-Smith R; Gannon NP; Bisoffi M; Trujillo KA; Conn CA
    Amino Acids; 2013 Oct; 45(4):901-11. PubMed ID: 23812674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leucine decreases intramyocellular lipid deposition in an mTORC1-independent manner in palmitate-treated C2C12 myotubes.
    Wu H; Dridi S; Huang Y; Baum JI
    Am J Physiol Endocrinol Metab; 2020 Feb; 318(2):E152-E163. PubMed ID: 31770014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Branched-chain amino acid metabolism is regulated by ERRα in primary human myotubes and is further impaired by glucose loading in type 2 diabetes.
    Sjögren RJO; Rizo-Roca D; Chibalin AV; Chorell E; Furrer R; Katayama S; Harada J; Karlsson HKR; Handschin C; Moritz T; Krook A; Näslund E; Zierath JR
    Diabetologia; 2021 Sep; 64(9):2077-2091. PubMed ID: 34131782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of valine on myotube insulin sensitivity and metabolism with and without insulin resistance.
    Rivera ME; Lyon ES; Johnson MA; Sunderland KL; Vaughan RA
    Mol Cell Biochem; 2020 May; 468(1-2):169-183. PubMed ID: 32222880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GDF11 does not improve the palmitate induced insulin resistance in C2C12.
    Jing YY; Li D; Wu F; Gong LL; Li R
    Eur Rev Med Pharmacol Sci; 2017 Apr; 21(8):1795-1802. PubMed ID: 28485800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic Fate of Branched-Chain Amino Acids During Adipogenesis, in Adipocytes From Obese Mice and C2C12 Myotubes.
    Estrada-Alcalde I; Tenorio-Guzman MR; Tovar AR; Salinas-Rubio D; Torre-Villalvazo I; Torres N; Noriega LG
    J Cell Biochem; 2017 Apr; 118(4):808-818. PubMed ID: 27689828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diabetes and branched-chain amino acids: What is the link?
    Bloomgarden Z
    J Diabetes; 2018 May; 10(5):350-352. PubMed ID: 29369529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing the effects of palmitate, insulin, and palmitate-insulin co-treatment on myotube metabolism and insulin resistance.
    Rivera ME; Vaughan RA
    Lipids; 2021 Nov; 56(6):563-578. PubMed ID: 34382222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oleate dose-dependently regulates palmitate metabolism and insulin signaling in C2C12 myotubes.
    Capel F; Cheraiti N; Acquaviva C; Hénique C; Bertrand-Michel J; Vianey-Saban C; Prip-Buus C; Morio B
    Biochim Biophys Acta; 2016 Dec; 1861(12 Pt A):2000-2010. PubMed ID: 27725263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rosiglitazone, but not epigallocatechin-3-gallate, attenuates the decrease in PGC-1α protein levels in palmitate-induced insulin-resistant C2C12 cells.
    Karimfar MH; Haghani K; Babakhani A; Bakhtiyari S
    Lipids; 2015 Jun; 50(6):521-8. PubMed ID: 25893813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leucine stimulates PPARβ/δ-dependent mitochondrial biogenesis and oxidative metabolism with enhanced GLUT4 content and glucose uptake in myotubes.
    Schnuck JK; Sunderland KL; Gannon NP; Kuennen MR; Vaughan RA
    Biochimie; 2016; 128-129():1-7. PubMed ID: 27345255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intake of branched-chain or essential amino acids attenuates the elevation in muscle levels of PGC-1α4 mRNA caused by resistance exercise.
    Samuelsson H; Moberg M; Apró W; Ekblom B; Blomstrand E
    Am J Physiol Endocrinol Metab; 2016 Jul; 311(1):E246-51. PubMed ID: 27245337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Actions of chronic physiological 3-hydroxyisobuterate treatment on mitochondrial metabolism and insulin signaling in myotubes.
    Lyon ES; Rivera ME; Johnson MA; Sunderland KL; Vaughan RA
    Nutr Res; 2019 Jun; 66():22-31. PubMed ID: 31051319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leucine Supplementation Differently Modulates Branched-Chain Amino Acid Catabolism, Mitochondrial Function and Metabolic Profiles at the Different Stage of Insulin Resistance in Rats on High-Fat Diet.
    Liu R; Li H; Fan W; Jin Q; Chao T; Wu Y; Huang J; Hao L; Yang X
    Nutrients; 2017 Jun; 9(6):. PubMed ID: 28574481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.