BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 30706592)

  • 1. Glycosylation and glycan interactions can serve as extracellular machinery facilitating clathrin-independent endocytosis.
    Mathew MP; Donaldson JG
    Traffic; 2019 Apr; 20(4):295-300. PubMed ID: 30706592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct cargo-specific response landscapes underpin the complex and nuanced role of galectin-glycan interactions in clathrin-independent endocytosis.
    Mathew MP; Donaldson JG
    J Biol Chem; 2018 May; 293(19):7222-7237. PubMed ID: 29581232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the Role of Galectins in Clathrin-Independent Endocytosis.
    Mathew MP; Donaldson JG; Hanover JA
    Methods Mol Biol; 2022; 2442():391-411. PubMed ID: 35320537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutrient-responsive O-GlcNAcylation dynamically modulates the secretion of glycan-binding protein galectin 3.
    Mathew MP; Abramowitz LK; Donaldson JG; Hanover JA
    J Biol Chem; 2022 Mar; 298(3):101743. PubMed ID: 35183508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. α-Arrestins participate in cargo selection for both clathrin-independent and clathrin-mediated endocytosis.
    Prosser DC; Pannunzio AE; Brodsky JL; Thorner J; Wendland B; O'Donnell AF
    J Cell Sci; 2015 Nov; 128(22):4220-34. PubMed ID: 26459639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycosylation and raft endocytosis in cancer.
    Johannes L; Billet A
    Cancer Metastasis Rev; 2020 Jun; 39(2):375-396. PubMed ID: 32388640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorting of Clathrin-Independent Cargo Proteins Depends on Rab35 Delivered by Clathrin-Mediated Endocytosis.
    Dutta D; Donaldson JG
    Traffic; 2015 Sep; 16(9):994-1009. PubMed ID: 25988331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Key regulators of galectin-glycan interactions.
    Kamili NA; Arthur CM; Gerner-Smidt C; Tafesse E; Blenda A; Dias-Baruffi M; Stowell SR
    Proteomics; 2016 Dec; 16(24):3111-3125. PubMed ID: 27582340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive regulation at the cell surface by N-glycosylation.
    Dennis JW; Lau KS; Demetriou M; Nabi IR
    Traffic; 2009 Nov; 10(11):1569-78. PubMed ID: 19761541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GRP75 upregulates clathrin-independent endocytosis through actin cytoskeleton reorganization mediated by the concurrent activation of Cdc42 and RhoA.
    Chen H; Gao Z; He C; Xiang R; van Kuppevelt TH; Belting M; Zhang S
    Exp Cell Res; 2016 May; 343(2):223-236. PubMed ID: 27090015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly, organization and regulation of cell-surface receptors by lectin-glycan complexes.
    Elola MT; Blidner AG; Ferragut F; Bracalente C; Rabinovich GA
    Biochem J; 2015 Jul; 469(1):1-16. PubMed ID: 26173257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative and Statistical Study of the Dynamics of Clathrin-Dependent and -Independent Endocytosis Reveal a Differential Role of EndophilinA2.
    Bertot L; Grassart A; Lagache T; Nardi G; Basquin C; Olivo-Marin JC; Sauvonnet N
    Cell Rep; 2018 Feb; 22(6):1574-1588. PubMed ID: 29425511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The diverse dependence of galectin-1 and -8 on multivalency for the modulation of FGFR1 endocytosis.
    Żukowska D; Chorążewska A; Ciura K; Gędaj A; Kalka M; Poźniak M; Porębska N; Opaliński Ł
    Cell Commun Signal; 2024 May; 22(1):270. PubMed ID: 38750548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering galectin-glycan interactions for immunotherapy and immunomodulation.
    Farhadi SA; Hudalla GA
    Exp Biol Med (Maywood); 2016 May; 241(10):1074-83. PubMed ID: 27229902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Galectin-glycan lattices regulate cell-surface glycoprotein organization and signalling.
    Garner OB; Baum LG
    Biochem Soc Trans; 2008 Dec; 36(Pt 6):1472-7. PubMed ID: 19021578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Density-dependent lectin-glycan interactions as a paradigm for conditional regulation by posttranslational modifications.
    Dennis JW; Brewer CF
    Mol Cell Proteomics; 2013 Apr; 12(4):913-20. PubMed ID: 23378517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers.
    Lakshminarayan R; Wunder C; Becken U; Howes MT; Benzing C; Arumugam S; Sales S; Ariotti N; Chambon V; Lamaze C; Loew D; Shevchenko A; Gaus K; Parton RG; Johannes L
    Nat Cell Biol; 2014 Jun; 16(6):595-606. PubMed ID: 24837829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex N-glycans are the major ligands for galectin-1, -3, and -8 on Chinese hamster ovary cells.
    Patnaik SK; Potvin B; Carlsson S; Sturm D; Leffler H; Stanley P
    Glycobiology; 2006 Apr; 16(4):305-17. PubMed ID: 16319083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupling pathogen recognition to innate immunity through glycan-dependent mechanisms.
    Davicino RC; Eliçabe RJ; Di Genaro MS; Rabinovich GA
    Int Immunopharmacol; 2011 Oct; 11(10):1457-63. PubMed ID: 21600310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N-Glycosylation modulates the membrane sub-domain distribution and activity of glucose transporter 2 in pancreatic beta cells.
    Ohtsubo K; Takamatsu S; Gao C; Korekane H; Kurosawa TM; Taniguchi N
    Biochem Biophys Res Commun; 2013 May; 434(2):346-51. PubMed ID: 23548572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.