These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 30706592)

  • 1. Glycosylation and glycan interactions can serve as extracellular machinery facilitating clathrin-independent endocytosis.
    Mathew MP; Donaldson JG
    Traffic; 2019 Apr; 20(4):295-300. PubMed ID: 30706592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct cargo-specific response landscapes underpin the complex and nuanced role of galectin-glycan interactions in clathrin-independent endocytosis.
    Mathew MP; Donaldson JG
    J Biol Chem; 2018 May; 293(19):7222-7237. PubMed ID: 29581232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating the Role of Galectins in Clathrin-Independent Endocytosis.
    Mathew MP; Donaldson JG; Hanover JA
    Methods Mol Biol; 2022; 2442():391-411. PubMed ID: 35320537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nutrient-responsive O-GlcNAcylation dynamically modulates the secretion of glycan-binding protein galectin 3.
    Mathew MP; Abramowitz LK; Donaldson JG; Hanover JA
    J Biol Chem; 2022 Mar; 298(3):101743. PubMed ID: 35183508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. α-Arrestins participate in cargo selection for both clathrin-independent and clathrin-mediated endocytosis.
    Prosser DC; Pannunzio AE; Brodsky JL; Thorner J; Wendland B; O'Donnell AF
    J Cell Sci; 2015 Nov; 128(22):4220-34. PubMed ID: 26459639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycosylation and raft endocytosis in cancer.
    Johannes L; Billet A
    Cancer Metastasis Rev; 2020 Jun; 39(2):375-396. PubMed ID: 32388640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorting of Clathrin-Independent Cargo Proteins Depends on Rab35 Delivered by Clathrin-Mediated Endocytosis.
    Dutta D; Donaldson JG
    Traffic; 2015 Sep; 16(9):994-1009. PubMed ID: 25988331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Key regulators of galectin-glycan interactions.
    Kamili NA; Arthur CM; Gerner-Smidt C; Tafesse E; Blenda A; Dias-Baruffi M; Stowell SR
    Proteomics; 2016 Dec; 16(24):3111-3125. PubMed ID: 27582340
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive regulation at the cell surface by N-glycosylation.
    Dennis JW; Lau KS; Demetriou M; Nabi IR
    Traffic; 2009 Nov; 10(11):1569-78. PubMed ID: 19761541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GRP75 upregulates clathrin-independent endocytosis through actin cytoskeleton reorganization mediated by the concurrent activation of Cdc42 and RhoA.
    Chen H; Gao Z; He C; Xiang R; van Kuppevelt TH; Belting M; Zhang S
    Exp Cell Res; 2016 May; 343(2):223-236. PubMed ID: 27090015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly, organization and regulation of cell-surface receptors by lectin-glycan complexes.
    Elola MT; Blidner AG; Ferragut F; Bracalente C; Rabinovich GA
    Biochem J; 2015 Jul; 469(1):1-16. PubMed ID: 26173257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative and Statistical Study of the Dynamics of Clathrin-Dependent and -Independent Endocytosis Reveal a Differential Role of EndophilinA2.
    Bertot L; Grassart A; Lagache T; Nardi G; Basquin C; Olivo-Marin JC; Sauvonnet N
    Cell Rep; 2018 Feb; 22(6):1574-1588. PubMed ID: 29425511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The diverse dependence of galectin-1 and -8 on multivalency for the modulation of FGFR1 endocytosis.
    Żukowska D; Chorążewska A; Ciura K; Gędaj A; Kalka M; Poźniak M; Porębska N; Opaliński Ł
    Cell Commun Signal; 2024 May; 22(1):270. PubMed ID: 38750548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering galectin-glycan interactions for immunotherapy and immunomodulation.
    Farhadi SA; Hudalla GA
    Exp Biol Med (Maywood); 2016 May; 241(10):1074-83. PubMed ID: 27229902
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Miura A; Manabe Y; Suzuki KGN; Shomura H; Okamura S; Shirakawa A; Yano K; Miyake S; Mayusumi K; Lin CC; Morimoto K; Ishitobi J; Nakase I; Arai K; Kobayashi S; Ishikawa U; Kanoh H; Miyoshi E; Yamaji T; Kabayama K; Fukase K
    J Am Chem Soc; 2024 Aug; 146(32):22193-22207. PubMed ID: 38963258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Galectin-glycan lattices regulate cell-surface glycoprotein organization and signalling.
    Garner OB; Baum LG
    Biochem Soc Trans; 2008 Dec; 36(Pt 6):1472-7. PubMed ID: 19021578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density-dependent lectin-glycan interactions as a paradigm for conditional regulation by posttranslational modifications.
    Dennis JW; Brewer CF
    Mol Cell Proteomics; 2013 Apr; 12(4):913-20. PubMed ID: 23378517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers.
    Lakshminarayan R; Wunder C; Becken U; Howes MT; Benzing C; Arumugam S; Sales S; Ariotti N; Chambon V; Lamaze C; Loew D; Shevchenko A; Gaus K; Parton RG; Johannes L
    Nat Cell Biol; 2014 Jun; 16(6):595-606. PubMed ID: 24837829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex N-glycans are the major ligands for galectin-1, -3, and -8 on Chinese hamster ovary cells.
    Patnaik SK; Potvin B; Carlsson S; Sturm D; Leffler H; Stanley P
    Glycobiology; 2006 Apr; 16(4):305-17. PubMed ID: 16319083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling pathogen recognition to innate immunity through glycan-dependent mechanisms.
    Davicino RC; Eliçabe RJ; Di Genaro MS; Rabinovich GA
    Int Immunopharmacol; 2011 Oct; 11(10):1457-63. PubMed ID: 21600310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.