These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 30706621)

  • 1. Pd
    Lee WJ; Hwang YJ; Kim J; Jeong H; Yoon CW
    Chemphyschem; 2019 May; 20(10):1382-1391. PubMed ID: 30706621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydride Pinning Pathway in the Hydrogenation of CO
    Sarma PJ; Baruah SD; Logsdail A; Deka RC
    Chemphyschem; 2019 Mar; 20(5):680-686. PubMed ID: 30648792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen Generation from Additive-Free Formic Acid Decomposition Under Mild Conditions by Pd/C: Experimental and DFT Studies.
    Sanchez F; Motta D; Roldan A; Hammond C; Villa A; Dimitratos N
    Top Catal; 2018; 61(3):254-266. PubMed ID: 30956509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boosting Formate Production in Electrocatalytic CO
    Jiang B; Zhang XG; Jiang K; Wu DY; Cai WB
    J Am Chem Soc; 2018 Feb; 140(8):2880-2889. PubMed ID: 29409320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Intermolecular Interactions in the Catalytic Reaction of Formic Acid on Cu(111).
    Shiotari A; Putra SEM; Shiozawa Y; Hamamoto Y; Inagaki K; Morikawa Y; Sugimoto Y; Yoshinobu J; Hamada I
    Small; 2021 May; 17(20):e2008010. PubMed ID: 33759365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient catalytic decomposition of formic acid for the selective generation of H2 and H/D exchange with a water-soluble rhodium complex in aqueous solution.
    Fukuzumi S; Kobayashi T; Suenobu T
    ChemSusChem; 2008; 1(10):827-34. PubMed ID: 18846597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of H2 on the gas-phase decomposition of formic acid: a theoretical study.
    Hu SW; Wang XY; Chu TW; Liu XQ
    J Phys Chem A; 2005 Oct; 109(40):9129-40. PubMed ID: 16332022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Engineering of a Supported PdAg Catalyst for Hydrogenation of CO
    Mori K; Sano T; Kobayashi H; Yamashita H
    J Am Chem Soc; 2018 Jul; 140(28):8902-8909. PubMed ID: 29932642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopic understanding of electrocatalytic reduction of CO
    Sahu A; Mondal K; Ghosh P
    J Mol Model; 2018 Aug; 24(9):248. PubMed ID: 30132139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Versatile Rh- and Ir-Based Catalysts for CO
    Fidalgo J; Ruiz-Castañeda M; García-Herbosa G; Carbayo A; Jalón FA; Rodríguez AM; Manzano BR; Espino G
    Inorg Chem; 2018 Nov; 57(22):14186-14198. PubMed ID: 30395446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dehydrogenation of Formic Acid Catalyzed by a Ruthenium Complex with an N,N'-Diimine Ligand.
    Guan C; Zhang DD; Pan Y; Iguchi M; Ajitha MJ; Hu J; Li H; Yao C; Huang MH; Min S; Zheng J; Himeda Y; Kawanami H; Huang KW
    Inorg Chem; 2017 Jan; 56(1):438-445. PubMed ID: 27983821
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zeolite-Encaged Pd-Mn Nanocatalysts for CO
    Sun Q; Chen BWJ; Wang N; He Q; Chang A; Yang CM; Asakura H; Tanaka T; Hülsey MJ; Wang CH; Yu J; Yan N
    Angew Chem Int Ed Engl; 2020 Nov; 59(45):20183-20191. PubMed ID: 32770613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon.
    Bi QY; Lin JD; Liu YM; He HY; Huang FQ; Cao Y
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11849-53. PubMed ID: 27552650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CO
    Chattaraj D; Majumder C
    Phys Chem Chem Phys; 2023 Jan; 25(3):2584-2594. PubMed ID: 36602161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of trichloroethylene by hydrodechlorination using formic acid as hydrogen source over supported Pd catalysts.
    Yu X; Wu T; Yang XJ; Xu J; Auzam J; Semiat R; Han YF
    J Hazard Mater; 2016 Mar; 305():178-189. PubMed ID: 26685065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formate dehydrogenase activity by a Cu(II)-based molecular catalyst and deciphering the mechanism using DFT studies.
    Mishra A; Srivastava D; Raj D; Patra N; Padhi SK
    Dalton Trans; 2024 Jan; 53(3):1209-1220. PubMed ID: 38108489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decomposition of formic acid using tungsten(VI) oxide supported AgPd nanoparticles.
    Akbayrak S
    J Colloid Interface Sci; 2019 Mar; 538():682-688. PubMed ID: 30591196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Role of Nitrogen-doping in the Catalytic Transfer Hydrogenation of Phenol to Cyclohexanone with Formic Acid over Pd supported on Carbon Nanotubes.
    Hu B; Li X; Busser W; Schmidt S; Xia W; Li G; Li X; Peng B
    Chemistry; 2021 Jul; 27(42):10948-10956. PubMed ID: 33998733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic Studies on NaHCO
    Marcos R; Bertini F; Rinkevicius Z; Peruzzini M; Gonsalvi L; Ahlquist MSG
    Chemistry; 2018 Apr; 24(20):5366-5372. PubMed ID: 29243870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced catalytic activity over palladium supported on ZrO
    Wang T; Li F; An H; Xue W; Wang Y
    RSC Adv; 2019 Jan; 9(6):3359-3366. PubMed ID: 35518976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.