These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30706926)

  • 1. The extraordinary optical transmission and sensing properties of Ag/Ti composite nanohole arrays.
    Larson S; Carlson D; Ai B; Zhao Y
    Phys Chem Chem Phys; 2019 Feb; 21(7):3771-3780. PubMed ID: 30706926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-Area Fabrication of Complex Nanohole Arrays with Highly Tunable Plasmonic Properties.
    Wang Y; Chong HB; Zhang Z; Zhao Y
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37435-37443. PubMed ID: 32698576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced extraordinary optical transmission and refractive-index sensing sensitivity in tapered plasmonic nanohole arrays.
    Chen Z; Li P; Zhang S; Chen Y; Liu P; Duan H
    Nanotechnology; 2019 Aug; 30(33):335201. PubMed ID: 31013483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition from discrete patches to plasmonic nanohole array by glancing angle deposition on nanosphere monolayers.
    Bradley L; Ye D; Luong HM; Zhao Y
    Nanotechnology; 2020 May; 31(20):205301. PubMed ID: 31995523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanohole arrays in chemical analysis: manufacturing methods and applications.
    Masson JF; Murray-Méthot MP; Live LS
    Analyst; 2010 Jul; 135(7):1483-9. PubMed ID: 20358096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced extraordinary optical transmission (EOT) through arrays of bridged nanohole pairs and their sensing applications.
    Yue W; Wang Z; Yang Y; Li J; Wu Y; Chen L; Ooi B; Wang X; Zhang XX
    Nanoscale; 2014 Jul; 6(14):7917-23. PubMed ID: 24898441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical and physical optimization of nanohole-array sensors prepared by modified nanosphere lithography.
    Murray-Methot MP; Menegazzo N; Masson JF
    Analyst; 2008 Dec; 133(12):1714-21. PubMed ID: 19082074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localized surface plasmon resonance biosensing with large area of gold nanoholes fabricated by nanosphere lithography.
    Xiang G; Zhang N; Zhou X
    Nanoscale Res Lett; 2010 Mar; 5(5):818-22. PubMed ID: 20672118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EOT or Kretschmann configuration? Comparative study of the plasmonic modes in gold nanohole arrays.
    Couture M; Live LS; Dhawan A; Masson JF
    Analyst; 2012 Sep; 137(18):4162-70. PubMed ID: 22832550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput nanohole array based system to monitor multiple binding events in real time.
    Ji J; O'Connell JG; Carter DJ; Larson DN
    Anal Chem; 2008 Apr; 80(7):2491-8. PubMed ID: 18307360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interface-induced nucleation and growth: a new route for fabricating ordered silver nanohole arrays.
    Zuo Z; Wen Y; Zhang S
    Nanoscale; 2018 Aug; 10(29):14039-14046. PubMed ID: 29995028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomically flat symmetric elliptical nanohole arrays in a gold film for ultrasensitive refractive index sensing.
    Cervantes Tellez GA; Hassan S; Tait RN; Berini P; Gordon R
    Lab Chip; 2013 Jul; 13(13):2541-6. PubMed ID: 23478567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Template-stripped smooth Ag nanohole arrays with silica shells for surface plasmon resonance biosensing.
    Im H; Lee SH; Wittenberg NJ; Johnson TW; Lindquist NC; Nagpal P; Norris DJ; Oh SH
    ACS Nano; 2011 Aug; 5(8):6244-53. PubMed ID: 21770414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic Nanohole Arrays on Top of Porous Silicon Sensors: A Win-Win Situation.
    Balderas-Valadez RF; Pacholski C
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36436-36444. PubMed ID: 34297537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ag-Cu mixed phase plasmonic nanostructures fabricated by shadow nanosphere lithography and glancing angle co-deposition.
    Ingram W; Larson S; Carlson D; Zhao Y
    Nanotechnology; 2017 Jan; 28(1):015301. PubMed ID: 27897147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel 3D Au nanohole arrays with outstanding optical properties.
    Ai B; Yu Y; Möhwald H; Zhang G
    Nanotechnology; 2013 Jan; 24(3):035303. PubMed ID: 23263405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large Area Nanohole Arrays for Sensing Fabricated by Interference Lithography.
    Valsecchi C; Gomez Armas LE; Weber de Menezes J
    Sensors (Basel); 2019 May; 19(9):. PubMed ID: 31083502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new generation of sensors based on extraordinary optical transmission.
    Gordon R; Sinton D; Kavanagh KL; Brolo AG
    Acc Chem Res; 2008 Aug; 41(8):1049-57. PubMed ID: 18605739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-channel extraordinary ultraviolet transmission through an aluminum nanohole array.
    Hu J; Shen M; Li Z; Li X; Liu G; Wang X; Kan C; Li Y
    Nanotechnology; 2017 May; 28(21):215205. PubMed ID: 28358302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold Nanohole Array with Sub-1 nm Roughness by Annealing for Sensitivity Enhancement of Extraordinary Optical Transmission Biosensor.
    Zhang J; Irannejad M; Yavuz M; Cui B
    Nanoscale Res Lett; 2015 Dec; 10(1):944. PubMed ID: 26058510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.