These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 30707325)

  • 1. Nanocomposite based on green synthesis of gold nanoparticles decorated with functionalized multi-walled carbon nanotubes for the electrochemical determination of hydroxychloroquine.
    Nardi N; Baumgarten LG; Dreyer JP; Santana ER; Winiarski JP; Vieira IC
    J Pharm Biomed Anal; 2023 Nov; 236():115681. PubMed ID: 37672903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic Organic Network-based C3-symmetric@Triazine core as a selective Hg
    Alshubramy MA; Alam MM; Alamry KA; Asiri AM; Hussein MA; Rahman MM
    Des Monomers Polym; 2024; 27(1):35-50. PubMed ID: 38903406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Humidity Sensor Based on a Graphene Oxide-Carbon Nanotube-Modified Co
    Li L; Zhang J; Song Y; Dan R; Xia X; Zhao J; Xu R
    ACS Appl Mater Interfaces; 2024 Jul; 16(26):33981-33992. PubMed ID: 38897966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controllable assembly of hollow interpenetrated zeolite imidazole framework nanocomposite for dopamine charge collection.
    Sun W; Liu J; Chu H; Wang Y
    Mikrochim Acta; 2023 Dec; 191(1):48. PubMed ID: 38141091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical sensor for simultaneous determination of trifluoperazine and dopamine in human serum based on graphene oxide-carbon nanotubes/iron-nickel nanoparticles.
    Ahmed YM; Eldin MA; Galal A; Atta NF
    RSC Adv; 2023 Aug; 13(36):25209-25217. PubMed ID: 37622009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid-state reference electrodes based on carbon nanotubes and polyacrylate membranes.
    Rius-Ruiz FX; Kisiel A; Michalska A; Maksymiuk K; Riu J; Rius FX
    Anal Bioanal Chem; 2011 Apr; 399(10):3613-22. PubMed ID: 21318254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-walled carbon nanotubes-metal-organic framework nanocomposite based sensor for the monitoring of multiple monoamine neurotransmitters in living cells.
    Su M; Peng W; Ding Z; Zhou Y; Gao H; Jiang Q; Yu C
    Bioelectrochemistry; 2024 Jul; 160():108776. PubMed ID: 39018612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the Thermal-Oxidative Stability of Azithromycin Using a Thermoactivated Sensor Based on Cerium Molybdate and Multi-Walled Carbon Nanotubes.
    Costa HRA; Santos AO; Teixeira YN; Silva MAS; Feitosa VA; Morais S; Oliveira TMBF
    Nanomaterials (Basel); 2024 May; 14(11):. PubMed ID: 38869524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical Porous Graphene-Iron Carbide Hybrid Derived From Functionalized Graphene-Based Metal-Organic Gel as Efficient Electrochemical Dopamine Sensor.
    Vermisoglou EC; Jakubec P; Malina O; Kupka V; Schneemann A; Fischer RA; Zbořil R; Jayaramulu K; Otyepka M
    Front Chem; 2020; 8():544. PubMed ID: 32850616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Au-Pt-Ni nanochains as dopamine catalysts: role of elements and their spatial distribution.
    Fan H; Le Boeuf W; Maheshwari V
    Nanoscale Adv; 2023 Apr; 5(8):2244-2250. PubMed ID: 37056628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical sensor formed from poly(3,4-ethylenedioxyselenophene) and nitrogen-doped graphene composite for dopamine detection.
    Kadir A; Jamal R; Abdiryim T; Sawut N; Che Y; Helil Z; Zhang H
    RSC Adv; 2021 Nov; 11(59):37544-37551. PubMed ID: 35496423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a Glucose Sensor Based on Glucose Dehydrogenase Using Polydopamine-Functionalized Nanotubes.
    Jeon WY; Kim HH; Choi YB
    Membranes (Basel); 2021 May; 11(6):. PubMed ID: 34073998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reorientation of Polymers in an Applied Electric Field for Electrochemical Sensors.
    LaFreniere JMJ; Roberge EJ; Halpern JM
    J Electrochem Soc; 2020; 167(3):. PubMed ID: 32265575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microscale reactor embedded with Graphene/hierarchical gold nanostructures for electrochemical sensing: application to the determination of dopamine.
    Jalali M; Filine E; Dalfen S; Mahshid S
    Mikrochim Acta; 2020 Jan; 187(1):90. PubMed ID: 31898755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A review on recent advancements in electrochemical biosensing using carbonaceous nanomaterials.
    Sanati A; Jalali M; Raeissi K; Karimzadeh F; Kharaziha M; Mahshid SS; Mahshid S
    Mikrochim Acta; 2019 Nov; 186(12):773. PubMed ID: 31720840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A ruthenium(IV) disulfide based non-enzymatic sensor for selective and sensitive amperometric determination of dopamine.
    Deepika J; Sha R; Badhulika S
    Mikrochim Acta; 2019 Jun; 186(7):480. PubMed ID: 31250208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical dopamine sensor based on the use of a thermosensitive polymer and an nanocompositeĀ prepared from multiwalled carbon nanotubes and graphene oxide.
    Zhao P; Chen C; Ni M; Peng L; Li C; Xie Y; Fei J
    Mikrochim Acta; 2019 Feb; 186(3):134. PubMed ID: 30707325
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research on Temperature-Switched Dopamine Electrochemical Sensor Based on Thermosensitive Polymers and MWCNTs.
    Wang H; Feng Z; Lin F; Zhao Y; Hu Y; Yang Q; Zou Y; Zhao Y; Yang R
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Switched voltammetric determination of ractopamine by using a temperature-responsive sensing film.
    Chen C; Zhang M; Li C; Xie Y; Fei J
    Mikrochim Acta; 2018 Feb; 185(2):155. PubMed ID: 29594543
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.