BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 30707782)

  • 1. Reductive Cyclization of Unactivated Alkyl Chlorides with Tethered Alkenes under Visible-Light Photoredox Catalysis.
    Claros M; Ungeheuer F; Franco F; Martin-Diaconescu V; Casitas A; Lloret-Fillol J
    Angew Chem Int Ed Engl; 2019 Apr; 58(15):4869-4874. PubMed ID: 30707782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp
    Kariofillis SK; Doyle AG
    Acc Chem Res; 2021 Feb; 54(4):988-1000. PubMed ID: 33511841
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoredox Activation of Inert Alkyl Chlorides for the Reductive Cross-Coupling with Aromatic Alkenes.
    Aragón J; Sun S; Pascual D; Jaworski S; Lloret-Fillol J
    Angew Chem Int Ed Engl; 2022 May; 61(21):e202114365. PubMed ID: 35289039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cobalt-Catalyzed Electroreductive Alkylation of Unactivated Alkyl Chlorides with Conjugated Olefins.
    Al Zubaydi S; Onuigbo IO; Truesdell BL; Sevov CS
    Angew Chem Int Ed Engl; 2024 Jan; 63(1):e202313830. PubMed ID: 37963333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-Electrophile Coupling of Unactivated Alkyl Chlorides.
    Sakai HA; Liu W; Le CC; MacMillan DWC
    J Am Chem Soc; 2020 Jul; 142(27):11691-11697. PubMed ID: 32564602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Triple Photoredox/Cobalt/Brønsted Acid Catalysis Enabling Markovnikov Hydroalkoxylation of Unactivated Alkenes.
    Nakagawa M; Matsuki Y; Nagao K; Ohmiya H
    J Am Chem Soc; 2022 May; 144(18):7953-7959. PubMed ID: 35476545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dicarbofunctionalizations of an Unactivated Alkene via Photoredox/Nickel Dual Catalysis.
    Dey P; Jana SK; Rai P; Maji B
    Org Lett; 2022 Sep; 24(34):6261-6265. PubMed ID: 35984910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enantioselective C(sp
    Zhou J; Wang D; Xu W; Hu Z; Xu T
    J Am Chem Soc; 2023 Feb; 145(4):2081-2087. PubMed ID: 36688920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metallaphotoredox-catalysed sp(3)-sp(3) cross-coupling of carboxylic acids with alkyl halides.
    Johnston CP; Smith RT; Allmendinger S; MacMillan DW
    Nature; 2016 Aug; 536(7616):322-5. PubMed ID: 27535536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Merging Visible Light Photoredox and Gold Catalysis.
    Hopkinson MN; Tlahuext-Aca A; Glorius F
    Acc Chem Res; 2016 Oct; 49(10):2261-2272. PubMed ID: 27610939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. When Light Meets Nitrogen-Centered Radicals: From Reagents to Catalysts.
    Yu XY; Zhao QQ; Chen J; Xiao WJ; Chen JR
    Acc Chem Res; 2020 May; 53(5):1066-1083. PubMed ID: 32286794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrosulfonylation of Alkenes with Sulfonyl Chlorides under Visible Light Activation.
    Hell SM; Meyer CF; Misale A; Sap JBI; Christensen KE; Willis MC; Trabanco AA; Gouverneur V
    Angew Chem Int Ed Engl; 2020 Jul; 59(28):11620-11626. PubMed ID: 32286720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engaging unactivated alkyl, alkenyl and aryl iodides in visible-light-mediated free radical reactions.
    Nguyen JD; D'Amato EM; Narayanam JM; Stephenson CR
    Nat Chem; 2012 Oct; 4(10):854-9. PubMed ID: 23001000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthetic Utilization of α-Aminoalkyl Radicals and Related Species in Visible Light Photoredox Catalysis.
    Nakajima K; Miyake Y; Nishibayashi Y
    Acc Chem Res; 2016 Sep; 49(9):1946-56. PubMed ID: 27505299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Ir(COD)Cl]2 as a catalyst precursor for the intramolecular hydroamination of unactivated alkenes with primary amines and secondary alkyl- or arylamines: a combined catalytic, mechanistic, and computational investigation.
    Hesp KD; Tobisch S; Stradiotto M
    J Am Chem Soc; 2010 Jan; 132(1):413-26. PubMed ID: 20000354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoredox/Nickel Dual Catalysis Enables the Synthesis of Alkyl Cyclopropanes via C(sp
    Jana SK; Maiti M; Dey P; Maji B
    Org Lett; 2022 Feb; 24(6):1298-1302. PubMed ID: 35133153
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-valent cobalt catalysis: new opportunities for C-H functionalization.
    Gao K; Yoshikai N
    Acc Chem Res; 2014 Apr; 47(4):1208-19. PubMed ID: 24576170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Merging Visible Light Photoredox Catalysis with Metal Catalyzed C-H Activations: On the Role of Oxygen and Superoxide Ions as Oxidants.
    Fabry DC; Rueping M
    Acc Chem Res; 2016 Sep; 49(9):1969-79. PubMed ID: 27556812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nickel-Catalyzed Ligand-Controlled Selective Reductive Cyclization/Cross-Couplings.
    Pan Q; Ping Y; Kong W
    Acc Chem Res; 2023 Mar; 56(5):515-535. PubMed ID: 36688822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intramolecular Cobalt/Visible Light Cocatalyzed Reductive Coupling of Unactivated Arenes with Unactivated Alkenes.
    Cai J; Zeng G; Jiang K; Luo H; Yin B
    Org Lett; 2024 Jan; 26(1):327-331. PubMed ID: 38160449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.