These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 30708214)

  • 1. Reducing plant uptake of a brominated contaminant (2,2',4,4'‑tetrabrominated diphenyl ether) by incorporation of maize straw into horticultural soil.
    Xiang L; Sheng H; Xu M; Redmile-Gordon M; Bian Y; Yang X; Jiang X; Wang F
    Sci Total Environ; 2019 May; 663():29-37. PubMed ID: 30708214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochar combined with compost to reduce the mobility, bioavailability and plant uptake of 2,2',4,4'-tetrabrominated diphenyl ether in soil.
    Xiang L; Sheng H; Gu C; Marc RG; Wang Y; Bian Y; Jiang X; Wang F
    J Hazard Mater; 2019 Jul; 374():341-348. PubMed ID: 31026627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uptake of polybrominated diphenyl ethers by carrot and lettuce crops grown in compost-amended soils.
    Bizkarguenaga E; Iparraguirre A; Oliva E; Quintana JB; Rodil R; Fernández LA; Zuloaga O; Prieto A
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3847-59. PubMed ID: 26498966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short-term enhancement effect of nitrogen addition on microbial degradation and plant uptake of polybrominated diphenyl ethers (PBDEs) in contaminated mangrove soil.
    Chen J; Zhou HC; Wang C; Zhu CQ; Tam NF
    J Hazard Mater; 2015 Dec; 300():84-92. PubMed ID: 26156523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Field study on the uptake and translocation of PBDEs by wheat (Triticum aestivum L.) in soils amended with sewage sludge.
    Li H; Qu R; Yan L; Guo W; Ma Y
    Chemosphere; 2015 Mar; 123():87-92. PubMed ID: 25563166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake, translocation, and debromination of polybrominated diphenyl ethers in maize.
    Zhao M; Zhang S; Wang S; Huang H
    J Environ Sci (China); 2012; 24(3):402-9. PubMed ID: 22655352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translocation of polybrominated diphenyl ethers from field-contaminated soils to an edible plant.
    Yang CY; Wu SC; Lee CC; Shih YH
    J Hazard Mater; 2018 Jun; 351():215-223. PubMed ID: 29550555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partition uptake of a brominated diphenyl ether by the edible plant root of white radish (Raphanus sativus L.).
    Yang CY; Chang ML; Wu SC; Shih YH
    Environ Pollut; 2017 Apr; 223():178-184. PubMed ID: 28169073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fate and ecological effects of decabromodiphenyl ether in a field lysimeter.
    Du W; Ji R; Sun Y; Zhu J; Wu J; Guo H
    Environ Sci Technol; 2013 Aug; 47(16):9167-74. PubMed ID: 23899302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field and modeling study of PBDEs uptake by three tree species.
    Ding C; Chang WJ; Zeng H; Ni HG
    Sci Total Environ; 2014 Feb; 472():923-8. PubMed ID: 24342099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transformation of hydroxylated and methoxylated 2,2',4,4',5-brominated diphenyl ether (BDE-99) in plants.
    Pan L; Sun J; Wu X; Wei Z; Zhu L
    J Environ Sci (China); 2016 Nov; 49():197-202. PubMed ID: 28007175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavior of decabromodiphenyl ether (BDE-209) in soil: effects of rhizosphere and mycorrhizal colonization of ryegrass roots.
    Wang S; Zhang S; Huang H; Christie P
    Environ Pollut; 2011 Mar; 159(3):749-53. PubMed ID: 21183262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Widespread polybrominated diphenyl ether (PBDE) contamination of urban soils in Melbourne, Australia.
    McGrath TJ; Morrison PD; Sandiford CJ; Ball AS; Clarke BO
    Chemosphere; 2016 Dec; 164():225-232. PubMed ID: 27588576
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Debrominated, hydroxylated and methoxylated metabolism in maize (Zea mays L.) exposed to lesser polybrominated diphenyl ethers (PBDEs).
    Wang S; Zhang S; Huang H; Lu A; Ping H
    Chemosphere; 2012 Nov; 89(11):1295-301. PubMed ID: 22682894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polybrominated diphenyl ether (PBDE) accumulation by earthworms (Eisenia fetida) exposed to biosolids-, polyurethane foam microparticle-, and Penta-BDE-amended soils.
    Gaylor MO; Harvey E; Hale RC
    Environ Sci Technol; 2013 Dec; 47(23):13831-9. PubMed ID: 24160918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioaccumulation and bioavailability of polybrominated diphenyl ethers [corrected] (PBDEs) in soil.
    Liang X; Zhu S; Chen P; Zhu L
    Environ Pollut; 2010 Jul; 158(7):2387-92. PubMed ID: 20483516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uptake, translocation and metabolism of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in maize (Zea mays L.).
    Wang S; Zhang S; Huang H; Zhao M; Lv J
    Chemosphere; 2011 Oct; 85(3):379-85. PubMed ID: 21798573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical review of soil contamination by polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFRs); concentrations, sources and congener profiles.
    McGrath TJ; Ball AS; Clarke BO
    Environ Pollut; 2017 Nov; 230():741-757. PubMed ID: 28732337
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction model for cadmium transfer from soil to carrot (Daucus carota L.) and its application to derive soil thresholds for food safety.
    Ding C; Zhang T; Wang X; Zhou F; Yang Y; Huang G
    J Agric Food Chem; 2013 Oct; 61(43):10273-82. PubMed ID: 24079518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorption-desorption behavior of polybrominated diphenyl ethers in soils.
    Olshansky Y; Polubesova T; Vetter W; Chefetz B
    Environ Pollut; 2011 Oct; 159(10):2375-9. PubMed ID: 21783286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.