These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 30708331)

  • 1. Behavior of two-chamber microbial electrochemical systems started-up with different ion-exchange membrane separators.
    Koók L; Quéméner ED; Bakonyi P; Zitka J; Trably E; Tóth G; Pavlovec L; Pientka Z; Bernet N; Bélafi-Bakó K; Nemestóthy N
    Bioresour Technol; 2019 Apr; 278():279-286. PubMed ID: 30708331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Power generation using different cation, anion, and ultrafiltration membranes in microbial fuel cells.
    Kim JR; Cheng S; Oh SE; Logan BE
    Environ Sci Technol; 2007 Feb; 41(3):1004-9. PubMed ID: 17328216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of electrochemical and microbiological characterization of microbial fuel cells equipped with SPEEK and Nafion membrane electrode assemblies.
    Suzuki K; Owen R; Mok J; Mochihara H; Hosokawa T; Kubota H; Sakamoto H; Matsuda A; Tashiro Y; Futamata H
    J Biosci Bioeng; 2016 Sep; 122(3):322-8. PubMed ID: 27215833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of Polyester Cloth as an Alternative Separator to Nafion Membrane in Microbial Fuel Cells for Bioelectricity Generation Using Swine Wastewater.
    Kim T; Kang S; Sung JH; Kang YK; Kim YH; Jang JK
    J Microbiol Biotechnol; 2016 Dec; 26(12):2171-2178. PubMed ID: 27666990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance evaluation of microbial electrochemical systems operated with Nafion and supported ionic liquid membranes.
    Koók L; Nemestóthy N; Bakonyi P; Zhen G; Kumar G; Lu X; Su L; Saratale GD; Kim SH; Gubicza L
    Chemosphere; 2017 May; 175():350-355. PubMed ID: 28235744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance and microbial ecology of air-cathode microbial fuel cells with layered electrode assemblies.
    Butler CS; Nerenberg R
    Appl Microbiol Biotechnol; 2010 May; 86(5):1399-408. PubMed ID: 20098985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of hexavalent chromium in dual-chamber microbial fuel cells separated by different ion exchange membranes.
    Wang H; Song X; Zhang H; Tan P; Kong F
    J Hazard Mater; 2020 Feb; 384():121459. PubMed ID: 31732350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of proton exchange membrane on the performance and microbial community composition of air-cathode microbial fuel cells.
    Lee YY; Kim TG; Cho KS
    J Biotechnol; 2015 Oct; 211():130-7. PubMed ID: 26235818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of initial biofilm growth on the anode impedance of microbial fuel cells.
    Ramasamy RP; Ren Z; Mench MM; Regan JM
    Biotechnol Bioeng; 2008 Sep; 101(1):101-8. PubMed ID: 18646217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Implications of Membranes Used as Separators in Microbial Fuel Cells.
    Ramirez-Nava J; Martínez-Castrejón M; García-Mesino RL; López-Díaz JA; Talavera-Mendoza O; Sarmiento-Villagrana A; Rojano F; Hernández-Flores G
    Membranes (Basel); 2021 Sep; 11(10):. PubMed ID: 34677504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of separator and inoculum type on electricity generation and microbial community in single-chamber microbial fuel cells.
    Yu J; Park Y; Lee T
    Bioprocess Biosyst Eng; 2014 Apr; 37(4):667-75. PubMed ID: 24009019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A μL-scale micromachined microbial fuel cell having high power density.
    Choi S; Lee HS; Yang Y; Parameswaran P; Torres CI; Rittmann BE; Chae J
    Lab Chip; 2011 Mar; 11(6):1110-7. PubMed ID: 21311808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel configuration of microbial fuel cell stack bridged internally through an extra cation exchange membrane.
    Liu Z; Liu J; Zhang S; Su Z
    Biotechnol Lett; 2008 Jun; 30(6):1017-23. PubMed ID: 18259873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion exchange membrane cathodes for scalable microbial fuel cells.
    Zuo Y; Cheng S; Logan BE
    Environ Sci Technol; 2008 Sep; 42(18):6967-72. PubMed ID: 18853817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane.
    Liu H; Logan BE
    Environ Sci Technol; 2004 Jul; 38(14):4040-6. PubMed ID: 15298217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of microbial fuel cells with and without Nafion solution as cathode binding agent.
    Huang Y; He Z; Mansfeld F
    Bioelectrochemistry; 2010 Oct; 79(2):261-4. PubMed ID: 20478750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of biofouling on ion transport through cation exchange membranes and microbial fuel cell performance.
    Choi MJ; Chae KJ; Ajayi FF; Kim KY; Yu HW; Kim CW; Kim IS
    Bioresour Technol; 2011 Jan; 102(1):298-303. PubMed ID: 20659795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fouling of proton exchange membrane (PEM) deteriorates the performance of microbial fuel cell.
    Xu J; Sheng GP; Luo HW; Li WW; Wang LF; Yu HQ
    Water Res; 2012 Apr; 46(6):1817-24. PubMed ID: 22257931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficiency, operational stability and biofouling of novel sulfomethylated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene cation exchange membrane in microbial fuel cells.
    Koók L; Žitka J; Szakács S; Rózsenberszki T; Otmar M; Nemestóthy N; Bélafi-Bakó K; Bakonyi P
    Bioresour Technol; 2021 Aug; 333():125153. PubMed ID: 33866075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electricity generation using membrane and salt bridge microbial fuel cells.
    Min B; Cheng S; Logan BE
    Water Res; 2005 May; 39(9):1675-86. PubMed ID: 15899266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.