These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 30708349)

  • 1. Computerized cognitive training for Chinese mild cognitive impairment patients: A neuropsychological and fMRI study.
    Li BY; He NY; Qiao Y; Xu HM; Lu YZ; Cui PJ; Ling HW; Yan FH; Tang HD; Chen SD
    Neuroimage Clin; 2019; 22():101691. PubMed ID: 30708349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of an 8-week computerized cognitive training program in older adults: a study protocol for a randomized controlled trial.
    Ten Brinke LF; Best JR; Crockett RA; Liu-Ambrose T
    BMC Geriatr; 2018 Jan; 18(1):31. PubMed ID: 29378515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shanghai cognitive intervention of mild cognitive impairment for delaying progress with longitudinal evaluation-a prospective, randomized controlled study (SIMPLE): rationale, design, and methodology.
    Lin Y; Li B; Tang H; Xu Q; Wu Y; Cheng Q; Li C; Xiao S; Shen L; Tang W; Yu H; He N; Lin H; Yan F; Cao W; Yang S; Liu Y; Zhao W; Lu D; Jiao B; Xiao X; Zhou L; Chen S
    BMC Neurol; 2018 Jul; 18(1):103. PubMed ID: 30041656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hippocampal plasticity underpins long-term cognitive gains from resistance exercise in MCI.
    Broadhouse KM; Singh MF; Suo C; Gates N; Wen W; Brodaty H; Jain N; Wilson GC; Meiklejohn J; Singh N; Baune BT; Baker M; Foroughi N; Wang Y; Kochan N; Ashton K; Brown M; Li Z; Mavros Y; Sachdev PS; Valenzuela MJ
    Neuroimage Clin; 2020; 25():102182. PubMed ID: 31978826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of the effects between 2 computerized cognitive training programs, Bettercog and COMCOG, on elderly patients with MCI and mild dementia: A single-blind randomized controlled study.
    Lee GJ; Bang HJ; Lee KM; Kong HH; Seo HS; Oh M; Bang M
    Medicine (Baltimore); 2018 Nov; 97(45):e13007. PubMed ID: 30407291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cognitive training and neuroplasticity in mild cognitive impairment (COG-IT): protocol for a two-site, blinded, randomised, controlled treatment trial.
    D'Antonio J; Simon-Pearson L; Goldberg T; Sneed JR; Rushia S; Kerner N; Andrews H; Hellegers C; Tolbert S; Perea E; Petrella J; Doraiswamy PM; Devanand D
    BMJ Open; 2019 Aug; 9(8):e028536. PubMed ID: 31471436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cognitive training changes hippocampal function in mild cognitive impairment: a pilot study.
    Rosen AC; Sugiura L; Kramer JH; Whitfield-Gabrieli S; Gabrieli JD
    J Alzheimers Dis; 2011; 26 Suppl 3(Suppl 3):349-57. PubMed ID: 21971474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of computerized cognitive training on functional brain networks in patients with vascular cognitive impairment and no dementia.
    Li QG; Xing Y; Zhu ZD; Fei XL; Tang Y; Lu J
    CNS Neurosci Ther; 2024 Jun; 30(6):e14779. PubMed ID: 38828650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Augmenting Computerized Cognitive Training With Vortioxetine for Age-Related Cognitive Decline: A Randomized Controlled Trial.
    Lenze EJ; Stevens A; Waring JD; Pham VT; Haddad R; Shimony J; Miller JP; Bowie CR
    Am J Psychiatry; 2020 Jun; 177(6):548-555. PubMed ID: 32212856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exercise Training and Functional Connectivity Changes in Mild Cognitive Impairment and Healthy Elders.
    Chirles TJ; Reiter K; Weiss LR; Alfini AJ; Nielson KA; Smith JC
    J Alzheimers Dis; 2017; 57(3):845-856. PubMed ID: 28304298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuroimaging Functional Magnetic Resonance Imaging Task-Based Dorsolateral Prefrontal Cortex Activation Following 12 Weeks of Cosmos caudatus Supplementation Among Older Adults With Mild Cognitive Impairment.
    You YX; Shahar S; Mohamad M; Rajab NF; Haron H; Che Din N; Abdul Hamid H
    J Magn Reson Imaging; 2021 Dec; 54(6):1804-1818. PubMed ID: 34080265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered functional connectivity of the marginal division in Parkinson's disease with mild cognitive impairment: A pilot resting-state fMRI study.
    Li MG; Chen YY; Chen ZY; Feng J; Liu MY; Lou X; Shu SY; Wang ZF; Ma L
    J Magn Reson Imaging; 2019 Jul; 50(1):183-192. PubMed ID: 30644620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computerized multi-domain cognitive training reduces brain atrophy in patients with amnestic mild cognitive impairment.
    Zhang H; Wang Z; Wang J; Lyu X; Wang X; Liu Y; Zeng X; Yuan H; Wang H; Yu X
    Transl Psychiatry; 2019 Jan; 9(1):48. PubMed ID: 30705261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Connectivity and Response Inhibition: A Secondary Analysis of an 8-Week Randomized Controlled Trial of Computerized Cognitive Training.
    Ten Brinke LF; Hsu CL; Erickson KI; Handy TC; Liu-Ambrose T
    J Alzheimers Dis; 2021; 80(4):1525-1537. PubMed ID: 33720882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computerized cognitive rehabilitation for treatment of cognitive impairment in multiple sclerosis: an explorative study.
    Vilou I; Bakirtzis C; Artemiadis A; Ioannidis P; Papadimitriou M; Konstantinopoulou E; Aretouli E; Messinis L; Nasios G; Dardiotis E; Kosmidis M; Grigoriadis N
    J Integr Neurosci; 2020 Jun; 19(2):341-347. PubMed ID: 32706198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MRI-based comparative study of different mild cognitive impairment subtypes: protocol for an observational case-control study.
    Yu Y; Zhao W; Li S; Yin C
    BMJ Open; 2017 Mar; 7(3):e013432. PubMed ID: 28274963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficacy of a Computer-Assisted Cognitive Rehabilitation Intervention in Relapsing-Remitting Multiple Sclerosis Patients: A Multicenter Randomized Controlled Trial.
    Messinis L; Nasios G; Kosmidis MH; Zampakis P; Malefaki S; Ntoskou K; Nousia A; Bakirtzis C; Grigoriadis N; Gourzis P; Papathanasopoulos P
    Behav Neurol; 2017; 2017():5919841. PubMed ID: 29463950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reasoning training in veteran and civilian traumatic brain injury with persistent mild impairment.
    Vas A; Chapman S; Aslan S; Spence J; Keebler M; Rodriguez-Larrain G; Rodgers B; Jantz T; Martinez D; Rakic J; Krawczyk D
    Neuropsychol Rehabil; 2016 Aug; 26(4):502-31. PubMed ID: 26018041
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resting Cerebral Blood Flow After Exercise Training in Mild Cognitive Impairment.
    Alfini AJ; Weiss LR; Nielson KA; Verber MD; Smith JC
    J Alzheimers Dis; 2019; 67(2):671-684. PubMed ID: 30636734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Significant correlation between cerebral hypoperfusion and neuropsychological assessment scores of patients with mild cognitive impairment.
    Yoon HJ; Park KW; Jeong YJ; Kang DY
    Nucl Med Commun; 2012 Aug; 33(8):848-58. PubMed ID: 22692580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.