These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 30708838)
21. Understanding Why Effective Fungicides Against Individual Soilborne Pathogens Are Ineffective with Soilborne Pathogen Complexes. You MP; Lamichhane JR; Aubertot JN; Barbetti MJ Plant Dis; 2020 Mar; 104(3):904-920. PubMed ID: 31859588 [TBL] [Abstract][Full Text] [Related]
22. Identification and Characterization of Isolates of Pythium and Phytophthora spp. from Snap Beans with Cottony Leak. Olson JD; Damicone JP; Kahn BA Plant Dis; 2016 Jul; 100(7):1446-1453. PubMed ID: 30686183 [TBL] [Abstract][Full Text] [Related]
23. Frequency, Virulence, and Metalaxyl Sensitivity of Pythium spp. Isolated from Apple Roots Under Conventional and Organic Production Systems. Mazzola M; Andrews PK; Reganold JP; Lévesque CA Plant Dis; 2002 Jun; 86(6):669-675. PubMed ID: 30823243 [TBL] [Abstract][Full Text] [Related]
24. Pythium spp. Isolated from Bermudagrass During Overseed Transitions in Florida and Pathogenicity of Pythium irregulare on Poa trivialis. Stiles CM; Datnoff LE; Rayside PA Plant Dis; 2007 Oct; 91(10):1237-1244. PubMed ID: 30780510 [TBL] [Abstract][Full Text] [Related]
25. Differentiation of Pythium spp. from vegetable crops with molecular markers and sensitivity to azoxystrobin and mefenoxam. Matić S; Gilardi G; Gisi U; Gullino ML; Garibaldi A Pest Manag Sci; 2019 Feb; 75(2):356-365. PubMed ID: 29888848 [TBL] [Abstract][Full Text] [Related]
26. Pythium Species Associated with Damping-off of Pea in Certified Organic Fields in the Columbia Basin of Central Washington. Alcala AVC; Paulitz TC; Schroeder KL; Porter LD; Derie ML; du Toit LJ Plant Dis; 2016 May; 100(5):916-925. PubMed ID: 30686151 [TBL] [Abstract][Full Text] [Related]
27. Effect of potassium and manganese phosphites in the control of Pythium damping-off in soybean: a feasible alternative to fungicide seed treatments. Carmona MA; Sautua FJ; Grijalba PE; Cassina M; Pérez-Hernández O Pest Manag Sci; 2018 Feb; 74(2):366-374. PubMed ID: 28842951 [TBL] [Abstract][Full Text] [Related]
28. Differential Suppression of Damping-off Caused by Pythium aphanidermatum, P. irregulare, and P. myriotylum in Composts at Different Temperatures. Ben-Yephet Y; Nelson EB Plant Dis; 1999 Apr; 83(4):356-360. PubMed ID: 30845587 [TBL] [Abstract][Full Text] [Related]
29. Characterization of Toporek SM; Keinath AP Plant Dis; 2020 Nov; 104(11):2832-2842. PubMed ID: 32946348 [TBL] [Abstract][Full Text] [Related]
30. Identification and characterization of pleiotropic and epistatic QDRL conferring partial resistance to Pythium irregulare and P. sylvaticum in soybean. Lin F; Li W; McCoy AG; Wang K; Jacobs J; Zhang N; Huo X; Wani SH; Gu C; Chilvers MI; Wang D Theor Appl Genet; 2022 Oct; 135(10):3571-3582. PubMed ID: 36087141 [TBL] [Abstract][Full Text] [Related]
32. Suppression of Seedling Damping-Off Caused by Pythium ultimum, P. irregulare, and Rhizoctonia solani in Container Media Amended with a Diverse Range of Pacific Northwest Compost Sources. Scheuerell SJ; Sullivan DM; Mahaffee WF Phytopathology; 2005 Mar; 95(3):306-15. PubMed ID: 18943125 [TBL] [Abstract][Full Text] [Related]
33. Pythium Species and Isolate Diversity Influence Inhibition by the Biological Control Agent Streptomyces lydicus. Weiland JE Plant Dis; 2014 May; 98(5):653-659. PubMed ID: 30708563 [TBL] [Abstract][Full Text] [Related]
34. Liu Y; Vaghefi N; Ades PK; Idnurm A; Ahmed A; Taylor PWJ Plants (Basel); 2023 Mar; 12(6):. PubMed ID: 36987047 [TBL] [Abstract][Full Text] [Related]
35. Resistance of the Soybean Cultivar Archer to Pythium Damping-Off and Root Rot Caused by Several Pythium spp. Bates GD; Rothrock CS; Rupe JC Plant Dis; 2008 May; 92(5):763-766. PubMed ID: 30769592 [TBL] [Abstract][Full Text] [Related]
36. First Report of Pythium deliense Associated with Peanut Pod Rot in Georgia. Parkunan V; Brenneman T; Ji P Plant Dis; 2014 Sep; 98(9):1269. PubMed ID: 30699628 [TBL] [Abstract][Full Text] [Related]
37. Biological Significance of Mefenoxam Resistance in Phytophthora erythroseptica and Its Implications for the Management of Pink Rot of Potato. Taylor RJ; Pasche JS; Gudmestad NC Plant Dis; 2006 Jul; 90(7):927-934. PubMed ID: 30781032 [TBL] [Abstract][Full Text] [Related]
38. Temperature Affects Aggressiveness and Fungicide Sensitivity of Four Pythium spp. that Cause Soybean and Corn Damping Off in Iowa. Matthiesen RL; Ahmad AA; Robertson AE Plant Dis; 2016 Mar; 100(3):583-591. PubMed ID: 30688593 [TBL] [Abstract][Full Text] [Related]
39. Competitive Parasitic Fitness of Mefenoxam-Sensitive and -Resistant Isolates of Phytophthora erythroseptica under Fungicide Selection Pressure. Chapara V; Taylor RJ; Pasche JS; Gudmestad NC Plant Dis; 2011 Jun; 95(6):691-696. PubMed ID: 30731895 [TBL] [Abstract][Full Text] [Related]
40. Evaluating the effects of mefenoxam on taxonomic and functional dynamics of nontarget fungal communities during carrot cultivation. Tagele SB; Gachomo EW Sci Rep; 2024 Apr; 14(1):9867. PubMed ID: 38684826 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]