These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 30708955)
1. Atomic-Approach to Predict the Energetically Favored Composition Region and to Characterize the Short-, Medium-, and Extended-Range Structures of the Ti-Nb-Al Ternary Metallic Glasses. Cai B; Liu J; Li J; Yang M; Liu B Materials (Basel); 2019 Jan; 12(3):. PubMed ID: 30708955 [TBL] [Abstract][Full Text] [Related]
2. Atomistic modeling to optimize composition and characterize structure of Ni-Zr-Mo metallic glasses. Yang MH; Li SN; Li Y; Li JH; Liu BX Phys Chem Chem Phys; 2015 May; 17(20):13355-65. PubMed ID: 25923843 [TBL] [Abstract][Full Text] [Related]
3. Construction of Al-Mg-Zn Interatomic Potential and the Prediction of Favored Glass Formation Compositions and Associated Driving Forces. Cai B; Li J; Lai W; Liu J; Liu B Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329514 [TBL] [Abstract][Full Text] [Related]
4. Atomistic Design of Favored Compositions for Synthesizing the Al-Ni-Y Metallic Glasses. Wang Q; Li JH; Liu JB; Liu BX Sci Rep; 2015 Nov; 5():16218. PubMed ID: 26592568 [TBL] [Abstract][Full Text] [Related]
5. Favored composition design and atomic structure characterization for ternary Al-Cu-Y metallic glasses via proposed interatomic potential. Wang Q; Li JH; Liu JB; Liu BX J Phys Chem B; 2014 Apr; 118(16):4442-9. PubMed ID: 24735222 [TBL] [Abstract][Full Text] [Related]
6. Computation assisted design of favored composition for ternary Mg-Cu-Y metallic glass formation. Wang Q; Li JH; Liu BX Phys Chem Chem Phys; 2015 Jun; 17(22):14879-89. PubMed ID: 25981154 [TBL] [Abstract][Full Text] [Related]
7. Atomistic modeling to investigate the favored composition for metallic glass formation in the Ca-Mg-Ni ternary system. Zhao S; Li JH; An SM; Li SN; Liu BX Phys Chem Chem Phys; 2017 May; 19(19):12056-12063. PubMed ID: 28443885 [TBL] [Abstract][Full Text] [Related]
8. Prediction of favored and optimized compositions for Cu-Zr-Ni metallic glasses by interatomic potential. Cui YY; Li JH; Dai Y; Liu BX J Phys Chem B; 2011 Apr; 115(16):4703-8. PubMed ID: 21473611 [TBL] [Abstract][Full Text] [Related]
9. Thermodynamic calculation and interatomic potential to predict the favored composition region for the Cu-Zr-Al metallic glass formation. Cui YY; Wang TL; Li JH; Dai Y; Liu BX Phys Chem Chem Phys; 2011 Mar; 13(9):4103-8. PubMed ID: 21229150 [TBL] [Abstract][Full Text] [Related]
10. Proposed correlation of structure network inherited from producing techniques and deformation behavior for Ni-Ti-Mo metallic glasses via atomistic simulations. Yang MH; Li JH; Liu BX Sci Rep; 2016 Jul; 6():29722. PubMed ID: 27418115 [TBL] [Abstract][Full Text] [Related]
11. Proposed long-range empirical potential to study the metallic glasses in the Ni-Nb-Ta system. Dai Y; Li JH; Che XL; Liu BX J Phys Chem B; 2009 May; 113(20):7282-90. PubMed ID: 19438281 [TBL] [Abstract][Full Text] [Related]
12. Glass forming region of Cu-Ti-Hf ternary metal system derived from the n-body potential through molecular dynamics simulation. Liang SH; Dai Y; Li JH; Liu BX J Phys Chem B; 2010 Jul; 114(29):9540-5. PubMed ID: 20597519 [TBL] [Abstract][Full Text] [Related]
13. Nb and Ta layer doping effects on the interfacial energetics and electronic properties of LaAlO3/SrTiO3 heterostructure: first-principles analysis. Nazir S; Behtash M; Cheng J; Luo J; Yang K Phys Chem Chem Phys; 2016 Jan; 18(4):2379-88. PubMed ID: 26562134 [TBL] [Abstract][Full Text] [Related]
14. Predicted Optimum Composition for the Glass-Forming Ability of Bulk Amorphous Alloys: Application to Cu-Zr-Al. An Q; Samwer K; Goddard WA; Johnson WL; Jaramillo-Botero A; Garret G; Demetriou MD J Phys Chem Lett; 2012 Nov; 3(21):3143-8. PubMed ID: 26296020 [TBL] [Abstract][Full Text] [Related]
15. Chemical and topological short-range orders in the ternary Ni-Zr-Al metallic glasses studied by Monte Carlo simulations. Zhao SZ; Li JH; Liu BX J Phys Condens Matter; 2013 Mar; 25(9):095005. PubMed ID: 23334440 [TBL] [Abstract][Full Text] [Related]
16. Molecular dynamics simulation of minor Zr addition on short and medium-range orders of Cu-Zr metallic glass. Cao X; Sun M J Mol Model; 2022 Sep; 28(10):324. PubMed ID: 36129553 [TBL] [Abstract][Full Text] [Related]
17. Atomic-scale mechanisms of the glass-forming ability in metallic glasses. Yang L; Guo GQ; Chen LY; Huang CL; Ge T; Chen D; Liaw PK; Saksl K; Ren Y; Zeng QS; LaQua B; Chen FG; Jiang JZ Phys Rev Lett; 2012 Sep; 109(10):105502. PubMed ID: 23005298 [TBL] [Abstract][Full Text] [Related]
18. Composition Design Strategy for High Entropy Amorphous Alloys. Ding H; Zhang Q; Yao K Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38255621 [TBL] [Abstract][Full Text] [Related]
19. Development of interatomic potential for Al-Tb alloys using a deep neural network learning method. Tang L; Yang ZJ; Wen TQ; Ho KM; Kramer MJ; Wang CZ Phys Chem Chem Phys; 2020 Sep; 22(33):18467-18479. PubMed ID: 32778859 [TBL] [Abstract][Full Text] [Related]
20. Theoretical Prediction and Experimental Validation of the Glass-Forming Ability and Magnetic Properties of Fe-Si-B Metallic Glasses from Atomic Structures. Jiang Y; Jia S; Chen S; Li X; Wang L; Han X Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591483 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]