These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 30708972)

  • 1. Multi-GPU Based Parallel Design of the Ant Colony Optimization Algorithm for Endmember Extraction from Hyperspectral Images.
    Gao J; Sun Y; Zhang B; Chen Z; Gao L; Zhang W
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30708972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Endmember extraction and abundance estimation algorithm based on double-compressed sampling.
    Wang L; Bi Y; Wang W; Li J
    Sci Rep; 2024 Aug; 14(1):17934. PubMed ID: 39095382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [An algorithm of spectral minimum shannon entropy on extracting endmember of hyperspectral image].
    Yang KM; Liu SW; Wang LW; Yang J; Sun YY; He DD
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Aug; 34(8):2229-33. PubMed ID: 25474967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Online Unmixing of Multitemporal Hyperspectral Images Accounting for Spectral Variability.
    Thouvenin PA; Dobigeon N; Tourneret JY
    IEEE Trans Image Process; 2016 Sep; 25(9):3979-90. PubMed ID: 27305679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blind Hyperspectral Unmixing Using an Extended Linear Mixing Model to Address Spectral Variability.
    Drumetz L; Veganzones MA; Henrot S; Phlypo R; Chanussot J; Jutten C
    IEEE Trans Image Process; 2016 Aug; 25(8):3890-905. PubMed ID: 27305674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian estimation of linear mixtures using the normal compositional model. Application to hyperspectral imagery.
    Eches O; Dobigeon N; Mailhes C; Tourneret JY
    IEEE Trans Image Process; 2010 Jun; 19(6):1403-13. PubMed ID: 20215083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperspectral agricultural mapping using support vector machine-based endmember extraction (SVM-BEE).
    Filippi AM; Archibald R; Bhaduri BL; Bright EA
    Opt Express; 2009 Dec; 17(26):23823-42. PubMed ID: 20052093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic extraction of optimal endmembers from airborne hyperspectral imagery using iterative error analysis (IEA) and spectral discrimination measurements.
    Song A; Chang A; Choi J; Choi S; Kim Y
    Sensors (Basel); 2015 Jan; 15(2):2593-613. PubMed ID: 25625907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Research on endmember extraction algorithm based on spectral classification].
    Gao XH; Xiangli B; Wei RY; Lü QB; Wei JX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2011 Jul; 31(7):1995-8. PubMed ID: 21942068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Successive Projection Algorithm (SPA), an Algorithm with a Spatial Constraint for the Automatic Search of Endmembers in Hyperspectral Data.
    Zhang J; Rivard B; Rogge DM
    Sensors (Basel); 2008 Feb; 8(2):1321-1342. PubMed ID: 27879768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Independent component analysis for spectral unmixing in hyperspectral remote sensing image].
    Luo WF; Zhong L; Zhang B; Gao LR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jun; 30(6):1628-33. PubMed ID: 20707164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unsupervised Unmixing of Hyperspectral Images Accounting for Endmember Variability.
    Halimi A; Dobigeon N; Tourneret JY
    IEEE Trans Image Process; 2015 Dec; 24(12):4904-17. PubMed ID: 26302517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperspectral and Multispectral Image Fusion with Automated Extraction of Image-Based Endmember Bundles and Sparsity-Based Unmixing to Deal with Spectral Variability.
    Brezini SE; Deville Y
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperspectral Image Unmixing With Endmember Bundles and Group Sparsity Inducing Mixed Norms.
    Drumetz L; Meyer TR; Chanussot J; Bertozzi AL; Jutten C
    IEEE Trans Image Process; 2019 Jul; 28(7):3435-3450. PubMed ID: 30716036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonparametric Detection of Nonlinearly Mixed Pixels and Endmember Estimation in Hyperspectral Images.
    Imbiriba T; Bermudez JC; Richard C; Tourneret JY
    IEEE Trans Image Process; 2016 Mar; 25(3):1136-51. PubMed ID: 26685243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A spatial compositional model for linear unmixing and endmember uncertainty estimation.
    Zhou Y; Rangarajan A; Gader PD
    IEEE Trans Image Process; 2016 Dec; 25(12):5987-6002. PubMed ID: 28113399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive Markov random fields for joint unmixing and segmentation of hyperspectral images.
    Eches O; Benediktsson JA; Dobigeon N; Tourneret JY
    IEEE Trans Image Process; 2013 Jan; 22(1):5-16. PubMed ID: 22711772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hyperspectral image segmentation using a new spectral unmixing-based binary partition tree representation.
    Veganzones MA; Tochon G; Dalla-Mura M; Plaza AJ; Chanussot J
    IEEE Trans Image Process; 2014 Aug; 23(8):3574-3589. PubMed ID: 24951694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral Variability Aware Blind Hyperspectral Image Unmixing Based on Convex Geometry.
    Drumetz L; Chanussot J; Jutten C; Ma WK; Iwasaki A
    IEEE Trans Image Process; 2020 Feb; ():. PubMed ID: 32092005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Gaussian Mixture Model Representation of Endmember Variability in Hyperspectral Unmixing.
    Zhou Y; Rangarajan A; Gader PD
    IEEE Trans Image Process; 2018 May; 27(5):2242-2256. PubMed ID: 29432104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.