These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30709118)

  • 1. Bifurcation in the angular velocity of a circular disk propelled by symmetrically distributed camphor pills.
    Koyano Y; Kitahata H; Gryciuk M; Akulich N; Gorecka A; Malecki M; Gorecki J
    Chaos; 2019 Jan; 29(1):013125. PubMed ID: 30709118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relationship between the size of a camphor-driven rotor and its angular velocity.
    Koyano Y; Gryciuk M; Skrobanska P; Malecki M; Sumino Y; Kitahata H; Gorecki J
    Phys Rev E; 2017 Jul; 96(1-1):012609. PubMed ID: 29347181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bifurcation phenomena of two self-propelled camphor disks on an annular field depending on system length.
    Nishi K; Wakai K; Ueda T; Yoshii M; Ikura YS; Nishimori H; Nakata S; Nagayama M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022910. PubMed ID: 26382479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imperfect bifurcation in the rotation of a propeller-shaped camphor rotor.
    Koyano Y; Kitahata H
    Phys Rev E; 2021 Jan; 103(1-1):012202. PubMed ID: 33601587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rotational motion of a camphor disk in a circular region.
    Koyano Y; Suematsu NJ; Kitahata H
    Phys Rev E; 2019 Feb; 99(2-1):022211. PubMed ID: 30934219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inversion probability of three-bladed self-propelled rotors after forced stops of different durations.
    Nakata S; Matsufuji T; Gorecki J; Kitahata H; Nishimori H
    Phys Chem Chem Phys; 2020 Jun; 22(23):13123-13128. PubMed ID: 32490459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selection of the Rotation Direction for a Camphor Disk Resulting from Chiral Asymmetry of a Water Chamber.
    Nakata S; Yamamoto H; Koyano Y; Yamanaka O; Sumino Y; Suematsu NJ; Kitahata H; Skrobanska P; Gorecki J
    J Phys Chem B; 2016 Sep; 120(34):9166-72. PubMed ID: 27500909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oscillatory Motion of a Camphor Object on a Surfactant Solution.
    Xu Y; Takayama N; Er H; Nakata S
    J Phys Chem B; 2021 Feb; 125(6):1674-1679. PubMed ID: 33508193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On a simple model that explains inversion of a self-propelled rotor under periodic stop-and-release-operations.
    Koyano Y; Kitahata H; Nakata S; Gorecki J
    Chaos; 2020 Feb; 30(2):023105. PubMed ID: 32113248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motion modes of two self-propelled camphor boats on the surface of a surfactant-containing solution.
    Karasawa Y; Nomoto T; Chiari L; Toyota T; Fujinami M
    J Colloid Interface Sci; 2018 Feb; 511():184-192. PubMed ID: 29024858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unidirectional motion of a camphor disk on water forced by interactions between surface camphor concentration and dynamically changing boundaries.
    Gorecki J; Kitahata H; Suematsu NJ; Koyano Y; Skrobanska P; Gryciuk M; Malecki M; Tanabe T; Yamamoto H; Nakata S
    Phys Chem Chem Phys; 2017 Jul; 19(28):18767-18772. PubMed ID: 28696478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Height-dependent oscillatory motion of a plastic cup with a camphor disk floated on water.
    Fujita R; Takayama N; Matsuo M; Iima M; Nakata S
    Phys Chem Chem Phys; 2023 May; 25(20):14546-14551. PubMed ID: 37191103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristic oscillatory motion of a camphor boat sensitive to physicochemical environment.
    Nakata S; Yoshii M; Matsuda Y; Suematsu NJ
    Chaos; 2015 Jun; 25(6):064610. PubMed ID: 26117135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Propelled Motion of a Camphor Disk on a Photosensitive Amphiphilic Molecular Layer.
    Nakata S; Nasu K; Irie Y; Hatano S
    Langmuir; 2019 Mar; 35(12):4233-4237. PubMed ID: 30807697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effect of the Rotating Disk Geometry on the Flow and Flux Enhancement in a Dynamic Filtration System.
    Park JE; Kang TG; Moon H
    Membranes (Basel); 2023 Feb; 13(3):. PubMed ID: 36984677
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mode switching of a self-propelled camphor disk sensitive to the photoisomerization of a molecular layer on water.
    Nakata S; Miyaji T; Matsuda Y; Yoshii M; Abe M
    Langmuir; 2014 Jul; 30(25):7353-7. PubMed ID: 24901870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-propelled motion controlled by ionic liquids.
    Hua E; Gao J; Xu Y; Matsuo M; Nakata S
    Phys Chem Chem Phys; 2024 Mar; 26(10):8488-8493. PubMed ID: 38411193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-Resolved Measurements of Interfacial Tension and Flow Speed of the Inclined Water Surface around a Self-propelled Camphor Boat by the Quasi-elastic Laser Scattering Method.
    Nomoto T; Marumo M; Chiari L; Toyota T; Fujinami M
    J Phys Chem B; 2023 Mar; 127(12):2863-2871. PubMed ID: 36921258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collective motion of symmetric camphor papers in an annular water channel.
    Ikura YS; Heisler E; Awazu A; Nishimori H; Nakata S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012911. PubMed ID: 23944542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative estimation of the parameters for self-motion driven by difference in surface tension.
    Suematsu NJ; Sasaki T; Nakata S; Kitahata H
    Langmuir; 2014 Jul; 30(27):8101-8. PubMed ID: 24934964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.