These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 30709149)

  • 1. Synchronization transition in Sakaguchi-Kuramoto model on complex networks with partial degree-frequency correlation.
    Kundu P; Pal P
    Chaos; 2019 Jan; 29(1):013123. PubMed ID: 30709149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition to synchrony in degree-frequency correlated Sakaguchi-Kuramoto model.
    Kundu P; Khanra P; Hens C; Pal P
    Phys Rev E; 2017 Nov; 96(5-1):052216. PubMed ID: 29347755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Explosive synchronization with partial degree-frequency correlation.
    Pinto RS; Saa A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022818. PubMed ID: 25768563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bifurcations in the Kuramoto model on graphs.
    Chiba H; Medvedev GS; Mizuhara MS
    Chaos; 2018 Jul; 28(7):073109. PubMed ID: 30070519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Explosive synchronization coexists with classical synchronization in the Kuramoto model.
    Danziger MM; Moskalenko OI; Kurkin SA; Zhang X; Havlin S; Boccaletti S
    Chaos; 2016 Jun; 26(6):065307. PubMed ID: 27369869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frustration tuning and perfect phase synchronization in the Kuramoto-Sakaguchi model.
    Brede M; Kalloniatis AC
    Phys Rev E; 2016 Jun; 93(6):062315. PubMed ID: 27415288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Explosive synchronization transitions in complex neural networks.
    Chen H; He G; Huang F; Shen C; Hou Z
    Chaos; 2013 Sep; 23(3):033124. PubMed ID: 24089960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of the generalized Kuramoto model with nonlinear coupling: Bifurcation and stability.
    Zou W; Wang J
    Phys Rev E; 2020 Jul; 102(1-1):012219. PubMed ID: 32794968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Onset of synchronization of Kuramoto oscillators in scale-free networks.
    Peron T; Messias F de Resende B; Mata AS; Rodrigues FA; Moreno Y
    Phys Rev E; 2019 Oct; 100(4-1):042302. PubMed ID: 31770973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amplification of explosive width in complex networks.
    Khanra P; Kundu P; Pal P; Ji P; Hens C
    Chaos; 2020 Mar; 30(3):031101. PubMed ID: 32237759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Explosive synchronization in interlayer phase-shifted Kuramoto oscillators on multiplex networks.
    Kumar A; Jalan S
    Chaos; 2021 Apr; 31(4):041103. PubMed ID: 34251235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchronization in the random-field Kuramoto model on complex networks.
    Lopes MA; Lopes EM; Yoon S; Mendes JF; Goltsev AV
    Phys Rev E; 2016 Jul; 94(1-1):012308. PubMed ID: 27575149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perturbation analysis of complete synchronization in networks of phase oscillators.
    Tönjes R; Blasius B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026202. PubMed ID: 19792226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchronization transition of heterogeneously coupled oscillators on scale-free networks.
    Oh E; Lee DS; Kahng B; Kim D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011104. PubMed ID: 17358107
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perfect synchronization in complex networks with higher-order interactions.
    Dutta S; Kundu P; Khanra P; Hens C; Pal P
    Phys Rev E; 2023 Aug; 108(2-1):024304. PubMed ID: 37723785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Model reduction for the Kuramoto-Sakaguchi model: The importance of nonentrained rogue oscillators.
    Yue W; Smith LD; Gottwald GA
    Phys Rev E; 2020 Jun; 101(6-1):062213. PubMed ID: 32688503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Criterion for the emergence of explosive synchronization transitions in networks of phase oscillators.
    Zhu L; Tian L; Shi D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042921. PubMed ID: 24229263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite-size scaling of synchronized oscillation on complex networks.
    Hong H; Park H; Tang LH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066104. PubMed ID: 18233895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-organized correlations lead to explosive synchronization.
    Chen Y; Cao Z; Wang S; Hu G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022810. PubMed ID: 25768555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Explosive synchronization in adaptive and multilayer networks.
    Zhang X; Boccaletti S; Guan S; Liu Z
    Phys Rev Lett; 2015 Jan; 114(3):038701. PubMed ID: 25659026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.