These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 30709149)

  • 21. Reduction of oscillator dynamics on complex networks to dynamics on complete graphs through virtual frequencies.
    Gao J; Efstathiou K
    Phys Rev E; 2020 Feb; 101(2-1):022302. PubMed ID: 32168684
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low-dimensional dynamics of the Kuramoto model with rational frequency distributions.
    Skardal PS
    Phys Rev E; 2018 Aug; 98(2-1):022207. PubMed ID: 30253541
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transport and percolation theory in weighted networks.
    Li G; Braunstein LA; Buldyrev SV; Havlin S; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):045103. PubMed ID: 17500947
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Onset of synchronization in weighted complex networks: the effect of weight-degree correlation.
    Li M; Wang X; Fan Y; Di Z; Lai CH
    Chaos; 2011 Jun; 21(2):025108. PubMed ID: 21721786
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Repulsive synchronization in complex networks.
    Gao YC; Fu CJ; Cai SM; Yang C; Eugene Stanley H
    Chaos; 2019 May; 29(5):053130. PubMed ID: 31154772
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synchronization on Erdös-Rényi networks.
    Gong B; Yang L; Yang K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):037101. PubMed ID: 16241614
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Determination of the critical coupling of explosive synchronization transitions in scale-free networks by mean-field approximations.
    Peron TK; Rodrigues FA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056108. PubMed ID: 23214844
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reexamination of explosive synchronization in scale-free networks: the effect of disassortativity.
    Li P; Zhang K; Xu X; Zhang J; Small M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):042803. PubMed ID: 23679469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Model reduction for Kuramoto models with complex topologies.
    Hancock EJ; Gottwald GA
    Phys Rev E; 2018 Jul; 98(1-1):012307. PubMed ID: 30110852
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functionability in complex networks: Leading nodes for the transition from structural to functional networks through remote asynchronization.
    Rosell-Tarragó G; Díaz-Guilera A
    Chaos; 2020 Jan; 30(1):013105. PubMed ID: 32013516
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibition-induced explosive synchronization in multiplex networks.
    Jalan S; Rathore V; Kachhvah AD; Yadav A
    Phys Rev E; 2019 Jun; 99(6-1):062305. PubMed ID: 31330578
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Failure tolerance of spike phase synchronization in coupled neural networks.
    Jalili M
    Chaos; 2011 Sep; 21(3):033126. PubMed ID: 21974661
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exact explosive synchronization transitions in Kuramoto oscillators with time-delayed coupling.
    Wu H; Kang L; Liu Z; Dhamala M
    Sci Rep; 2018 Oct; 8(1):15521. PubMed ID: 30341395
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Critical behavior of the relaxation rate, the susceptibility, and a pair correlation function in the Kuramoto model on scale-free networks.
    Yoon S; Sorbaro Sindaci M; Goltsev AV; Mendes JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032814. PubMed ID: 25871164
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-network Kuramoto-Sakaguchi model under tempered stable Lévy noise.
    Kalloniatis AC; McLennan-Smith TA; Roberts DO; Zuparic ML
    Phys Rev E; 2019 Jan; 99(1-1):012205. PubMed ID: 30780365
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phase synchronization of coupled bursting neurons and the generalized Kuramoto model.
    Ferrari FA; Viana RL; Lopes SR; Stoop R
    Neural Netw; 2015 Jun; 66():107-18. PubMed ID: 25828961
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of stochastic perturbations on the cluster explosive synchronization of second-order Kuramoto oscillators on networks.
    Cao L; Tian C; Wang Z; Zhang X; Liu Z
    Phys Rev E; 2018 Feb; 97(2-1):022220. PubMed ID: 29548119
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Critical synchronization dynamics of the Kuramoto model on connectome and small world graphs.
    Ódor G; Kelling J
    Sci Rep; 2019 Dec; 9(1):19621. PubMed ID: 31873076
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Subgraphs in random networks.
    Itzkovitz S; Milo R; Kashtan N; Ziv G; Alon U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026127. PubMed ID: 14525069
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Route to synchronization in coupled phase oscillators with frequency-dependent coupling: Explosive or continuous?
    Kumar M; Gupta S
    Phys Rev E; 2022 Oct; 106(4-1):044310. PubMed ID: 36397479
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.