These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 30709273)

  • 1. Continuum models of the electrochemical diffuse layer in electronic-structure calculations.
    Nattino F; Truscott M; Marzari N; Andreussi O
    J Chem Phys; 2019 Jan; 150(4):041722. PubMed ID: 30709273
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving accuracy of electrochemical capacitance and solvation energetics in first-principles calculations.
    Sundararaman R; Letchworth-Weaver K; Schwarz KA
    J Chem Phys; 2018 Apr; 148(14):144105. PubMed ID: 29655358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond the continuum: how molecular solvent structure affects electrostatics and hydrodynamics at solid-electrolyte interfaces.
    Bonthuis DJ; Netz RR
    J Phys Chem B; 2013 Oct; 117(39):11397-413. PubMed ID: 24063251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential capacitance of the diffuse double layer at electrode-electrolyte interfaces considering ions as dielectric spheres: Part I. Binary electrolyte solutions.
    López-García JJ; Horno J; Grosse C
    J Colloid Interface Sci; 2017 Jun; 496():531-539. PubMed ID: 28259019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating continuum solvation models for the electrode-electrolyte interface: Challenges and strategies for improvement.
    Sundararaman R; Schwarz K
    J Chem Phys; 2017 Feb; 146(8):084111. PubMed ID: 28249432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon-Nanotube-Electrolyte Interface: Quantum and Electric Double Layer Capacitance.
    Li J; Pham PHQ; Zhou W; Pham TD; Burke PJ
    ACS Nano; 2018 Oct; 12(10):9763-9774. PubMed ID: 30226746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grand canonical simulations of electrochemical interfaces in implicit solvation models.
    Hörmann NG; Andreussi O; Marzari N
    J Chem Phys; 2019 Jan; 150(4):041730. PubMed ID: 30709280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemistry from first-principles in the grand canonical ensemble.
    Bhandari A; Peng C; Dziedzic J; Anton L; Owen JR; Kramer D; Skylaris CK
    J Chem Phys; 2021 Jul; 155(2):024114. PubMed ID: 34266248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling of Surface Chemistry and Electric Double Layer at TiO
    Zhang C; Hutter J; Sprik M
    J Phys Chem Lett; 2019 Jul; 10(14):3871-3876. PubMed ID: 31241948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Demystifying the Stern layer at a metal-electrolyte interface: Local dielectric constant, specific ion adsorption, and partial charge transfer.
    Wang X; Liu K; Wu J
    J Chem Phys; 2021 Mar; 154(12):124701. PubMed ID: 33810643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical Capacitance of CO-Terminated Pt(111) Dominated by the CO-Solvent Gap.
    Sundararaman R; Figueiredo MC; Koper MTM; Schwarz KA
    J Phys Chem Lett; 2017 Nov; 8(21):5344-5348. PubMed ID: 29040805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The electrochemical interface in first-principles calculations.
    Schwarz K; Sundararaman R
    Surf Sci Rep; 2020 May; 75(2):. PubMed ID: 34194128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface structure at the ionic liquid-electrified metal interface.
    Baldelli S
    Acc Chem Res; 2008 Mar; 41(3):421-31. PubMed ID: 18232666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water at an electrochemical interface--a simulation study.
    Willard AP; Reed SK; Madden PA; Chandler D
    Faraday Discuss; 2009; 141():423-41; discussion 443-65. PubMed ID: 19227369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular-Scale Structure of Electrode-Electrolyte Interfaces: The Case of Platinum in Aqueous Sulfuric Acid.
    Wu CH; Pascal TA; Baskin A; Wang H; Fang HT; Liu YS; Lu YH; Guo J; Prendergast D; Salmeron MB
    J Am Chem Soc; 2018 Nov; 140(47):16237-16244. PubMed ID: 30369234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of an electrical double layer model with a low dielectric layer between the electrode and the electrolyte.
    Nagy T; Henderson D; Boda D
    J Phys Chem B; 2011 Oct; 115(39):11409-19. PubMed ID: 21848262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double-layer in ionic liquids: paradigm change?
    Kornyshev AA
    J Phys Chem B; 2007 May; 111(20):5545-57. PubMed ID: 17469864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring chemical speciation at electrified interfaces using detailed continuum models.
    Baskin A; Prendergast D
    J Chem Phys; 2019 Jan; 150(4):041725. PubMed ID: 30709310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic structure calculations in electrolyte solutions: Methods for neutralization of extended charged interfaces.
    Bhandari A; Anton L; Dziedzic J; Peng C; Kramer D; Skylaris CK
    J Chem Phys; 2020 Sep; 153(12):124101. PubMed ID: 33003735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grand-canonical approach to density functional theory of electrocatalytic systems: Thermodynamics of solid-liquid interfaces at constant ion and electrode potentials.
    Melander MM; Kuisma MJ; Christensen TEK; Honkala K
    J Chem Phys; 2019 Jan; 150(4):041706. PubMed ID: 30709274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.