These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 30709321)

  • 1. Ultrathin oxide layers for nanoscale integration of molecular light absorbers, catalysts, and complete artificial photosystems.
    Katsoukis G; Frei H
    J Chem Phys; 2019 Jan; 150(4):041501. PubMed ID: 30709321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hierarchical Inorganic Assemblies for Artificial Photosynthesis.
    Kim W; Edri E; Frei H
    Acc Chem Res; 2016 Sep; 49(9):1634-45. PubMed ID: 27575376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling carbon dioxide reduction with water oxidation in nanoscale photocatalytic assemblies.
    Kim W; McClure BA; Edri E; Frei H
    Chem Soc Rev; 2016 Jun; 45(11):3221-43. PubMed ID: 27121982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled electron transfer by molecular wires embedded in ultrathin insulating membranes for driving redox catalysis.
    Frei H
    Photosynth Res; 2024 Dec; 162(2-3):473-495. PubMed ID: 38108928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterobinuclear Light Absorber Coupled to Molecular Wire for Charge Transport across Ultrathin Silica Membrane for Artificial Photosynthesis.
    Katsoukis G; Frei H
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31422-31432. PubMed ID: 30146876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis.
    Hammarström L
    Acc Chem Res; 2015 Mar; 48(3):840-50. PubMed ID: 25675365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Core-Shell Nanotube Array for Artificial Photosynthesis Featuring an Ultrathin Composite Separation Membrane.
    Edri E; Aloni S; Frei H
    ACS Nano; 2018 Jan; 12(1):533-541. PubMed ID: 29294285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes.
    Yang J; Cooper JK; Toma FM; Walczak KA; Favaro M; Beeman JW; Hess LH; Wang C; Zhu C; Gul S; Yano J; Kisielowski C; Schwartzberg A; Sharp ID
    Nat Mater; 2017 Mar; 16(3):335-341. PubMed ID: 27820814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrafast Charge Transfer between Light Absorber and Co
    Edri E; Cooper JK; Sharp ID; Guldi DM; Frei H
    J Am Chem Soc; 2017 Apr; 139(15):5458-5466. PubMed ID: 28355079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlling and Optimizing Photoinduced Charge Transfer across Ultrathin Silica Separation Membrane with Embedded Molecular Wires for Artificial Photosynthesis.
    Zhang H; Weiss I; Rudra I; Jo WJ; Kellner S; Katsoukis G; Galoppini E; Frei H
    ACS Appl Mater Interfaces; 2021 May; 13(20):23532-23546. PubMed ID: 33983702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting.
    Liu C; Tang J; Chen HM; Liu B; Yang P
    Nano Lett; 2013 Jun; 13(6):2989-92. PubMed ID: 23647159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water Oxidation Catalysts for Artificial Photosynthesis.
    Ye S; Ding C; Liu M; Wang A; Huang Q; Li C
    Adv Mater; 2019 Dec; 31(50):e1902069. PubMed ID: 31495962
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water Oxidation Mechanisms of Metal Oxide Catalysts by Vibrational Spectroscopy of Transient Intermediates.
    Zhang M; Frei H
    Annu Rev Phys Chem; 2017 May; 68():209-231. PubMed ID: 28226220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced Graphene Oxide Bipolar Membranes for Integrated Solar Water Splitting in Optimal pH.
    McDonald MB; Bruce JP; McEleney K; Freund MS
    ChemSusChem; 2015 Aug; 8(16):2645-54. PubMed ID: 26204850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid artificial photosynthetic systems comprising semiconductors as light harvesters and biomimetic complexes as molecular cocatalysts.
    Wen F; Li C
    Acc Chem Res; 2013 Nov; 46(11):2355-64. PubMed ID: 23730891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed Assembly of Nanoparticle Catalysts on Nanowire Photoelectrodes for Photoelectrochemical CO2 Reduction.
    Kong Q; Kim D; Liu C; Yu Y; Su Y; Li Y; Yang P
    Nano Lett; 2016 Sep; 16(9):5675-80. PubMed ID: 27494433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite.
    Mayer MT; Lin Y; Yuan G; Wang D
    Acc Chem Res; 2013 Jul; 46(7):1558-66. PubMed ID: 23425045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing a scalable artificial photosynthesis technology through nanomaterials by design.
    Lewis NS
    Nat Nanotechnol; 2016 Dec; 11(12):1010-1019. PubMed ID: 27920437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.