These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 30709397)
1. Heterologous phosphoketolase expression redirects flux towards acetate, perturbs sugar phosphate pools and increases respiratory demand in Saccharomyces cerevisiae. Bergman A; Hellgren J; Moritz T; Siewers V; Nielsen J; Chen Y Microb Cell Fact; 2019 Feb; 18(1):25. PubMed ID: 30709397 [TBL] [Abstract][Full Text] [Related]
2. Physiological characterization of recombinant Saccharomyces cerevisiae expressing the Aspergillus nidulans phosphoketolase pathway: validation of activity through 13C-based metabolic flux analysis. Papini M; Nookaew I; Siewers V; Nielsen J Appl Microbiol Biotechnol; 2012 Aug; 95(4):1001-10. PubMed ID: 22367611 [TBL] [Abstract][Full Text] [Related]
3. Improved production of fatty acid ethyl esters in Saccharomyces cerevisiae through up-regulation of the ethanol degradation pathway and expression of the heterologous phosphoketolase pathway. de Jong BW; Shi S; Siewers V; Nielsen J Microb Cell Fact; 2014 Mar; 13(1):39. PubMed ID: 24618091 [TBL] [Abstract][Full Text] [Related]
4. Functional expression and evaluation of heterologous phosphoketolases in Saccharomyces cerevisiae. Bergman A; Siewers V; Nielsen J; Chen Y AMB Express; 2016 Dec; 6(1):115. PubMed ID: 27848233 [TBL] [Abstract][Full Text] [Related]
5. Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae. Sonderegger M; Schümperli M; Sauer U Appl Environ Microbiol; 2004 May; 70(5):2892-7. PubMed ID: 15128548 [TBL] [Abstract][Full Text] [Related]
6. Improved polyhydroxybutyrate production by Saccharomyces cerevisiae through the use of the phosphoketolase pathway. Kocharin K; Siewers V; Nielsen J Biotechnol Bioeng; 2013 Aug; 110(8):2216-24. PubMed ID: 23456608 [TBL] [Abstract][Full Text] [Related]
7. Rewiring Central Carbon Metabolism Ensures Increased Provision of Acetyl-CoA and NADPH Required for 3-OH-Propionic Acid Production. Qin N; Li L; Ji X; Li X; Zhang Y; Larsson C; Chen Y; Nielsen J; Liu Z ACS Synth Biol; 2020 Dec; 9(12):3236-3244. PubMed ID: 33186034 [TBL] [Abstract][Full Text] [Related]
8. Engineering cytoplasmic acetyl-CoA synthesis decouples lipid production from nitrogen starvation in the oleaginous yeast Rhodosporidium azoricum. Donzella S; Cucchetti D; Capusoni C; Rizzi A; Galafassi S; Chiara G; Compagno C Microb Cell Fact; 2019 Nov; 18(1):199. PubMed ID: 31727065 [TBL] [Abstract][Full Text] [Related]
9. Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae. Kozak BU; van Rossum HM; Luttik MA; Akeroyd M; Benjamin KR; Wu L; de Vries S; Daran JM; Pronk JT; van Maris AJ mBio; 2014 Oct; 5(5):e01696-14. PubMed ID: 25336454 [TBL] [Abstract][Full Text] [Related]
10. Promiscuous phosphoketolase and metabolic rewiring enables novel non-oxidative glycolysis in yeast for high-yield production of acetyl-CoA derived products. Hellgren J; Godina A; Nielsen J; Siewers V Metab Eng; 2020 Nov; 62():150-160. PubMed ID: 32911054 [TBL] [Abstract][Full Text] [Related]
11. In Vivo Validation of In Silico Predicted Metabolic Engineering Strategies in Yeast: Disruption of α-Ketoglutarate Dehydrogenase and Expression of ATP-Citrate Lyase for Terpenoid Production. Gruchattka E; Kayser O PLoS One; 2015; 10(12):e0144981. PubMed ID: 26701782 [TBL] [Abstract][Full Text] [Related]
12. Phosphoketolase pathway contributes to carbon metabolism in cyanobacteria. Xiong W; Lee TC; Rommelfanger S; Gjersing E; Cano M; Maness PC; Ghirardi M; Yu J Nat Plants; 2015 Dec; 2():15187. PubMed ID: 27250745 [TBL] [Abstract][Full Text] [Related]
13. ¹³C-based metabolic flux analysis of Saccharomyces cerevisiae with a reduced Crabtree effect. Kajihata S; Matsuda F; Yoshimi M; Hayakawa K; Furusawa C; Kanda A; Shimizu H J Biosci Bioeng; 2015 Aug; 120(2):140-4. PubMed ID: 25634548 [TBL] [Abstract][Full Text] [Related]
14. Metabolic Engineering of Shi W; Li J; Chen Y; Liu X; Chen Y; Guo X; Xiao D ACS Synth Biol; 2021 Mar; 10(3):495-504. PubMed ID: 33576609 [TBL] [Abstract][Full Text] [Related]
15. Growth-rate dependency of de novo resveratrol production in chemostat cultures of an engineered Saccharomyces cerevisiae strain. Vos T; de la Torre Cortés P; van Gulik WM; Pronk JT; Daran-Lapujade P Microb Cell Fact; 2015 Sep; 14():133. PubMed ID: 26369953 [TBL] [Abstract][Full Text] [Related]
16. Replacement of the initial steps of ethanol metabolism in Saccharomyces cerevisiae by ATP-independent acetylating acetaldehyde dehydrogenase. Kozak BU; van Rossum HM; Niemeijer MS; van Dijk M; Benjamin K; Wu L; Daran JM; Pronk JT; van Maris AJ FEMS Yeast Res; 2016 Mar; 16(2):fow006. PubMed ID: 26818854 [TBL] [Abstract][Full Text] [Related]
17. Rewiring central carbon metabolism for tyrosol and salidroside production in Saccharomyces cerevisiae. Guo W; Huang Q; Feng Y; Tan T; Niu S; Hou S; Chen Z; Du ZQ; Shen Y; Fang X Biotechnol Bioeng; 2020 Aug; 117(8):2410-2419. PubMed ID: 32369184 [TBL] [Abstract][Full Text] [Related]
18. Production of fuels and chemicals from xylose by engineered Saccharomyces cerevisiae: a review and perspective. Kwak S; Jin YS Microb Cell Fact; 2017 May; 16(1):82. PubMed ID: 28494761 [TBL] [Abstract][Full Text] [Related]
19. Novel molecular, structural and evolutionary characteristics of the phosphoketolases from bifidobacteria and Coriobacteriales. Gupta RS; Nanda A; Khadka B PLoS One; 2017; 12(2):e0172176. PubMed ID: 28212383 [TBL] [Abstract][Full Text] [Related]
20. Cloning, expression, purification, cofactor requirements, and steady state kinetics of phosphoketolase-2 from Lactobacillus plantarum. Yevenes A; Frey PA Bioorg Chem; 2008 Jun; 36(3):121-7. PubMed ID: 18430452 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]