These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 30709766)

  • 1. Thermozymes: Adaptive strategies and tools for their biotechnological applications.
    Kumar S; Dangi AK; Shukla P; Baishya D; Khare SK
    Bioresour Technol; 2019 Apr; 278():372-382. PubMed ID: 30709766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvements of thermophilic enzymes: From genetic modifications to applications.
    Han H; Ling Z; Khan A; Virk AK; Kulshrestha S; Li X
    Bioresour Technol; 2019 May; 279():350-361. PubMed ID: 30755321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermozymes and their applications: a review of recent literature and patents.
    Bruins ME; Janssen AE; Boom RM
    Appl Biochem Biotechnol; 2001 Feb; 90(2):155-86. PubMed ID: 11297390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermostable cellulose saccharifying microbial enzymes: Characteristics, recent advances and biotechnological applications.
    Dadwal A; Sharma S; Satyanarayana T
    Int J Biol Macromol; 2021 Oct; 188():226-244. PubMed ID: 34371052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploration of extremophiles for high temperature biotechnological processes.
    Elleuche S; Schäfers C; Blank S; Schröder C; Antranikian G
    Curr Opin Microbiol; 2015 Jun; 25():113-9. PubMed ID: 26066287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermophiles in the genomic era: Biodiversity, science, and applications.
    Urbieta MS; Donati ER; Chan KG; Shahar S; Sin LL; Goh KM
    Biotechnol Adv; 2015 Nov; 33(6 Pt 1):633-47. PubMed ID: 25911946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current situation of biofuel production and its enhancement by CRISPR/Cas9-mediated genome engineering of microbial cells.
    Javed MR; Noman M; Shahid M; Ahmed T; Khurshid M; Rashid MH; Ismail M; Sadaf M; Khan F
    Microbiol Res; 2019 Feb; 219():1-11. PubMed ID: 30642460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metagenomics of Thermophiles with a Focus on Discovery of Novel Thermozymes.
    DeCastro ME; Rodríguez-Belmonte E; González-Siso MI
    Front Microbiol; 2016; 7():1521. PubMed ID: 27729905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Road to the future of systems biotechnology: CRISPR-Cas-mediated metabolic engineering for recombinant protein production.
    Roointan A; Morowvat MH
    Biotechnol Genet Eng Rev; 2016; 32(1-2):74-91. PubMed ID: 28052722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR-mediated genome editing in non-conventional yeasts for biotechnological applications.
    Cai P; Gao J; Zhou Y
    Microb Cell Fact; 2019 Apr; 18(1):63. PubMed ID: 30940138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural features of thermozymes.
    Li WF; Zhou XX; Lu P
    Biotechnol Adv; 2005 Jun; 23(4):271-81. PubMed ID: 15848038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermus thermophilus as source of thermozymes for biotechnological applications: homologous expression and biochemical characterization of an α-galactosidase.
    Aulitto M; Fusco S; Fiorentino G; Limauro D; Pedone E; Bartolucci S; Contursi P
    Microb Cell Fact; 2017 Feb; 16(1):28. PubMed ID: 28193276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy biotechnology in the CRISPR-Cas9 era.
    Estrela R; Cate JH
    Curr Opin Biotechnol; 2016 Apr; 38():79-84. PubMed ID: 26874259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Next Generation Prokaryotic Engineering: The CRISPR-Cas Toolkit.
    Mougiakos I; Bosma EF; de Vos WM; van Kranenburg R; van der Oost J
    Trends Biotechnol; 2016 Jul; 34(7):575-587. PubMed ID: 26944793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Harnessing CRISPR/Cas systems for programmable transcriptional and post-transcriptional regulation.
    Mahas A; Neal Stewart C; Mahfouz MM
    Biotechnol Adv; 2018; 36(1):295-310. PubMed ID: 29197619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The commercialization of genome-editing technologies.
    Brinegar K; K Yetisen A; Choi S; Vallillo E; Ruiz-Esparza GU; Prabhakar AM; Khademhosseini A; Yun SH
    Crit Rev Biotechnol; 2017 Nov; 37(7):924-932. PubMed ID: 28100080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeted Gene Manipulation in Plants Using the CRISPR/Cas Technology.
    Zhang D; Li Z; Li JF
    J Genet Genomics; 2016 May; 43(5):251-62. PubMed ID: 27165865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applications of CRISPR/Cas System to Bacterial Metabolic Engineering.
    Cho S; Shin J; Cho BK
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29621180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR technologies for bacterial systems: Current achievements and future directions.
    Choi KR; Lee SY
    Biotechnol Adv; 2016 Nov; 34(7):1180-1209. PubMed ID: 27566508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR-Enabled Tools for Engineering Microbial Genomes and Phenotypes.
    Tarasava K; Oh EJ; Eckert CA; Gill RT
    Biotechnol J; 2018 Sep; 13(9):e1700586. PubMed ID: 29917318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.