These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 30709767)

  • 41. Simultaneous nitrogen removal and methane production from Taihu blue algae against ammonia inhibition using integrated bioelectrochemical system (BES).
    Zheng X; Wang H; Yan Q; Zhang G; Chen C
    Sci Total Environ; 2021 Jul; 777():146144. PubMed ID: 33684748
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Acetoclastic methanogenesis led by Methanosarcina in anaerobic co-digestion of fats, oil and grease for enhanced production of methane.
    Kurade MB; Saha S; Salama ES; Patil SM; Govindwar SP; Jeon BH
    Bioresour Technol; 2019 Jan; 272():351-359. PubMed ID: 30384210
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Contribution analysis of methane production from food waste in bulk solution and on bio-electrode in a bio-electrochemical anaerobic digestion reactor.
    Park JG; Lee B; Kwon HJ; Jun HB
    Sci Total Environ; 2019 Jun; 670():741-751. PubMed ID: 30909050
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hydrogen enrichment as a bioaugmentation tool to alleviate ammonia inhibition on anaerobic digestion of phenol-containing wastewater.
    Wu B; He C; Yuan S; Hu Z; Wang W
    Bioresour Technol; 2019 Mar; 276():97-102. PubMed ID: 30612031
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ammonia inhibition on thermophilic anaerobic digestion.
    Sung S; Liu T
    Chemosphere; 2003 Oct; 53(1):43-52. PubMed ID: 12892665
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of phosphate addition on methane fermentation in the batch and upflow anaerobic sludge blanket (UASB) reactors.
    Suzuki S; Shintani M; Sanchez ZK; Kimura K; Numata M; Yamazoe A; Kimbara K
    Appl Microbiol Biotechnol; 2015 Dec; 99(24):10457-66. PubMed ID: 26350145
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biomethanation of Sewage Sludge with Food Waste Leachate Via Co-Digestion.
    Shin J; Kim YB; Jeon JH; Choi S; Park IK; Kim YM
    J Microbiol Biotechnol; 2017 Aug; 27(8):1513-1518. PubMed ID: 28633517
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydrogen utilization rate: A crucial indicator for anaerobic digestion process evaluation and monitoring.
    Hou YP; Peng DC; Xue XD; Wang HY; Pei LY
    J Biosci Bioeng; 2014 Apr; 117(4):519-23. PubMed ID: 24216460
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhancing methane production during the anaerobic digestion of crude glycerol using Japanese cedar charcoal.
    Watanabe R; Tada C; Baba Y; Fukuda Y; Nakai Y
    Bioresour Technol; 2013 Dec; 150():387-92. PubMed ID: 24189339
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cultivation of low-temperature (15 degrees C), anaerobic, wastewater treatment granules.
    O'Reilly J; Chinalia FA; Mahony T; Collins G; Wu J; O'Flaherty V
    Lett Appl Microbiol; 2009 Oct; 49(4):421-6. PubMed ID: 19674296
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improved net energy recovery in a sludge anaerobic digestion process by coupling an electrochemical system: electrode material and its impact on suspended microbial community.
    Yang L; Chen L; Chen K; Zhu H
    Environ Sci Pollut Res Int; 2023 Sep; 30(44):99473-99483. PubMed ID: 37612553
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Changes in bacterial and archaeal communities in anaerobic digesters treating different organic wastes.
    Kim YM; Jang HM; Lee K; Chantrasakdakul P; Kim D; Park KY
    Chemosphere; 2015 Dec; 141():134-7. PubMed ID: 26184789
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reversibility of hydrolysis inhibition at high hydrogen partial pressure in dry anaerobic digestion processes fed with wheat straw and inoculated with anaerobic granular sludge.
    Cazier EA; Trably E; Steyer JP; Escudie R
    Waste Manag; 2019 Feb; 85():498-505. PubMed ID: 30803605
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Thermophilic co-digestion of blackwater and organic kitchen waste: Impacts of granular activated carbon and different mixing ratios.
    Zhang Q; Li R; Guo B; Zhang L; Liu Y
    Waste Manag; 2021 Jul; 131():453-461. PubMed ID: 34265699
    [TBL] [Abstract][Full Text] [Related]  

  • 55. H
    Alfaro N; Fdz-Polanco M; Fdz-Polanco F; Díaz I
    Bioresour Technol; 2019 May; 280():1-8. PubMed ID: 30743054
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhancing methane production from anaerobic digestion of waste activated sludge with addition of sodium lauroyl sarcosinate.
    Du W; Huang X; Zhang J; Wang D; Yang Q; Li X
    Bioresour Technol; 2021 Sep; 336():125321. PubMed ID: 34091271
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multiple syntrophic interactions drive biohythane production from waste sludge in microbial electrolysis cells.
    Liu Q; Ren ZJ; Huang C; Liu B; Ren N; Xing D
    Biotechnol Biofuels; 2016; 9():162. PubMed ID: 27489567
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Carbon capture and biogas enhancement by carbon dioxide enrichment of anaerobic digesters treating sewage sludge or food waste.
    Bajón Fernández Y; Soares A; Villa R; Vale P; Cartmell E
    Bioresour Technol; 2014 May; 159():1-7. PubMed ID: 24632434
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ammonia-methane two-stage anaerobic digestion of dehydrated waste-activated sludge.
    Nakashimada Y; Ohshima Y; Minami H; Yabu H; Namba Y; Nishio N
    Appl Microbiol Biotechnol; 2008 Jul; 79(6):1061-9. PubMed ID: 18491038
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-rate blackwater anaerobic digestion under septic tank conditions with the amendment of biosolids-derived biochar synthesized at different temperatures.
    Shekhar Bose R; Zakaria BS; Kumar Tiwari M; Ranjan Dhar B
    Bioresour Technol; 2021 Jul; 331():125052. PubMed ID: 33812134
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.