These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1084 related articles for article (PubMed ID: 30709818)
1. Spatial-Temporal Pattern of Sulfate-Dependent Anaerobic Methane Oxidation in an Intertidal Zone of the East China Sea. Wang J; Hua M; Cai C; Hu J; Wang J; Yang H; Ma F; Qian H; Zheng P; Hu B Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30709818 [TBL] [Abstract][Full Text] [Related]
2. On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico. Orcutt B; Samarkin V; Boetius A; Joye S Environ Microbiol; 2008 May; 10(5):1108-17. PubMed ID: 18218032 [TBL] [Abstract][Full Text] [Related]
3. Community Structure and Microbial Associations in Sediment-Free Methanotrophic Enrichment Cultures from a Marine Methane Seep. Yu H; Speth DR; Connon SA; Goudeau D; Malmstrom RR; Woyke T; Orphan VJ Appl Environ Microbiol; 2022 Jun; 88(11):e0210921. PubMed ID: 35604226 [TBL] [Abstract][Full Text] [Related]
5. Microbial diversity and community structure of a highly active anaerobic methane-oxidizing sulfate-reducing enrichment. Jagersma GC; Meulepas RJ; Heikamp-de Jong I; Gieteling J; Klimiuk A; Schouten S; Damsté JS; Lens PN; Stams AJ Environ Microbiol; 2009 Dec; 11(12):3223-32. PubMed ID: 19703218 [TBL] [Abstract][Full Text] [Related]
6. Denitrifying Anaerobic Methane Oxidation: A Previously Overlooked Methane Sink in Intertidal Zone. Wang J; Cai C; Li Y; Hua M; Wang J; Yang H; Zheng P; Hu B Environ Sci Technol; 2019 Jan; 53(1):203-212. PubMed ID: 30457852 [TBL] [Abstract][Full Text] [Related]
7. Anaerobic Methane-Oxidizing Microbial Community in a Coastal Marine Sediment: Anaerobic Methanotrophy Dominated by ANME-3. Bhattarai S; Cassarini C; Gonzalez-Gil G; Egger M; Slomp CP; Zhang Y; Esposito G; Lens PNL Microb Ecol; 2017 Oct; 74(3):608-622. PubMed ID: 28389729 [TBL] [Abstract][Full Text] [Related]
9. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-I and ANME-II communities. Nauhaus K; Treude T; Boetius A; Krüger M Environ Microbiol; 2005 Jan; 7(1):98-106. PubMed ID: 15643940 [TBL] [Abstract][Full Text] [Related]
10. Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Thomsen TR; Finster K; Ramsing NB Appl Environ Microbiol; 2001 Apr; 67(4):1646-56. PubMed ID: 11282617 [TBL] [Abstract][Full Text] [Related]
11. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Orphan VJ; Hinrichs KU; Ussler W; Paull CK; Taylor LT; Sylva SP; Hayes JM; Delong EF Appl Environ Microbiol; 2001 Apr; 67(4):1922-34. PubMed ID: 11282650 [TBL] [Abstract][Full Text] [Related]
12. A distinct freshwater-adapted subgroup of ANME-1 dominates active archaeal communities in terrestrial subsurfaces in Japan. Takeuchi M; Yoshioka H; Seo Y; Tanabe S; Tamaki H; Kamagata Y; Takahashi HA; Igari S; Mayumi D; Sakata S Environ Microbiol; 2011 Dec; 13(12):3206-18. PubMed ID: 21651687 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous nitrate and sulfate dependent anaerobic oxidation of methane linking carbon, nitrogen and sulfur cycles. Nie WB; Ding J; Xie GJ; Tan X; Lu Y; Peng L; Liu BF; Xing DF; Yuan Z; Ren N Water Res; 2021 Apr; 194():116928. PubMed ID: 33618110 [TBL] [Abstract][Full Text] [Related]
14. Sulfate differentially stimulates but is not respired by diverse anaerobic methanotrophic archaea. Yu H; Skennerton CT; Chadwick GL; Leu AO; Aoki M; Tyson GW; Orphan VJ ISME J; 2022 Jan; 16(1):168-177. PubMed ID: 34285362 [TBL] [Abstract][Full Text] [Related]
15. Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source. Timmers PH; Suarez-Zuluaga DA; van Rossem M; Diender M; Stams AJ; Plugge CM ISME J; 2016 Jun; 10(6):1400-12. PubMed ID: 26636551 [TBL] [Abstract][Full Text] [Related]
16. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate. Nauhaus K; Albrecht M; Elvert M; Boetius A; Widdel F Environ Microbiol; 2007 Jan; 9(1):187-96. PubMed ID: 17227423 [TBL] [Abstract][Full Text] [Related]
17. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane. Wegener G; Niemann H; Elvert M; Hinrichs KU; Boetius A Environ Microbiol; 2008 Sep; 10(9):2287-98. PubMed ID: 18498367 [TBL] [Abstract][Full Text] [Related]
18. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Lösekann T; Knittel K; Nadalig T; Fuchs B; Niemann H; Boetius A; Amann R Appl Environ Microbiol; 2007 May; 73(10):3348-62. PubMed ID: 17369343 [TBL] [Abstract][Full Text] [Related]
19. Methane-Fueled Syntrophy through Extracellular Electron Transfer: Uncovering the Genomic Traits Conserved within Diverse Bacterial Partners of Anaerobic Methanotrophic Archaea. Skennerton CT; Chourey K; Iyer R; Hettich RL; Tyson GW; Orphan VJ mBio; 2017 Aug; 8(4):. PubMed ID: 28765215 [TBL] [Abstract][Full Text] [Related]
20. Distribution of anaerobic methane-oxidizing and sulfate-reducing communities in the G11 Nyegga pockmark, Norwegian Sea. Lazar CS; Dinasquet J; L'Haridon S; Pignet P; Toffin L Antonie Van Leeuwenhoek; 2011 Nov; 100(4):639-53. PubMed ID: 21751028 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]