BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 30710227)

  • 1. Optimization of microbial cell disruption using pressurized CO
    Howlader MS; DuBien J; Hassan EB; Rai N; French WT
    Bioprocess Biosyst Eng; 2019 May; 42(5):763-776. PubMed ID: 30710227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the lipid recovery from wet oleaginous microorganisms using different pretreatment techniques.
    Howlader MS; Rai N; Todd French W
    Bioresour Technol; 2018 Nov; 267():743-755. PubMed ID: 30064900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial cell disruption for improving lipid recovery using pressurized CO
    Howlader MS; French WT; Shields-Menard SA; Amirsadeghi M; Green M; Rai N
    Biotechnol Prog; 2017 May; 33(3):737-748. PubMed ID: 28371463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated Pressurized Liquid Extraction of Microbial Lipids from Oleaginous Yeasts.
    Li Q; Kamal R; Chu Y; Wang Q; Yu X; Huang Q
    Appl Biochem Biotechnol; 2020 Sep; 192(1):283-295. PubMed ID: 32378082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detergent assisted lipid extraction from wet yeast biomass for biodiesel: A response surface methodology approach.
    Yellapu SK; Bezawada J; Kaur R; Kuttiraja M; Tyagi RD
    Bioresour Technol; 2016 Oct; 218():667-73. PubMed ID: 27416517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous cell disruption and lipid extraction of wet aurantiochytrium sp. KRS101 using a high shear mixer.
    Kwak M; Kang SG; Hong WK; Han JI; Chang YK
    Bioprocess Biosyst Eng; 2018 May; 41(5):671-678. PubMed ID: 29453513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of continuous lipid extraction from Chlorella vulgaris by CO₂-expanded methanol for biodiesel production.
    Yang YH; Klinthong W; Tan CS
    Bioresour Technol; 2015 Dec; 198():550-6. PubMed ID: 26433151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocapture of CO2 from biogas by oleaginous microalgae for improving methane content and simultaneously producing lipid.
    Tongprawhan W; Srinuanpan S; Cheirsilp B
    Bioresour Technol; 2014 Oct; 170():90-99. PubMed ID: 25125196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel rapid ultrasonication-microwave treatment for total lipid extraction from wet oleaginous yeast biomass for sustainable biodiesel production.
    Patel A; Arora N; Pruthi V; Pruthi PA
    Ultrason Sonochem; 2019 Mar; 51():504-516. PubMed ID: 30082251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of biomass production by Chlorella sp. MJ 11/11 for use as a feedstock for biodiesel.
    Ghosh S; Roy S; Das D
    Appl Biochem Biotechnol; 2015 Apr; 175(7):3322-35. PubMed ID: 25690351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous extraction of lipids from Schizochytrium sp. by CO2-expanded ethanol.
    Wang HC; Klinthong W; Yang YH; Tan CS
    Bioresour Technol; 2015; 189():162-168. PubMed ID: 25879184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing pressurized liquid extraction of microbial lipids using the response surface method.
    Cescut J; Severac E; Molina-Jouve C; Uribelarrea JL
    J Chromatogr A; 2011 Jan; 1218(3):373-9. PubMed ID: 21185025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent developments of downstream processing for microbial lipids and conversion to biodiesel.
    Yellapu SK; Bharti ; Kaur R; Kumar LR; Tiwari B; Zhang X; Tyagi RD
    Bioresour Technol; 2018 May; 256():515-528. PubMed ID: 29472122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Overview of Current Pretreatment Methods Used to Improve Lipid Extraction from Oleaginous Micro-Organisms.
    Patel A; Mikes F; Matsakas L
    Molecules; 2018 Jun; 23(7):. PubMed ID: 29958398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oleaginous yeasts from Antarctica: Screening and preliminary approach on lipid accumulation.
    Viñarta SC; Angelicola MV; Barros JM; Fernández PM; Mac Cormak W; Aybar MJ; de Figueroa LI
    J Basic Microbiol; 2016 Dec; 56(12):1360-1368. PubMed ID: 27283113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strategy study on enhancing lipid productivity of filamentous oleaginous microalgae Tribonema.
    Hui W; Wenjun Z; Wentao C; Lili G; Tianzhong L
    Bioresour Technol; 2016 Oct; 218():161-6. PubMed ID: 27367812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of pressure and pressure cycling on disinfection of Enterococcus sp. in seawater using pressurized carbon dioxide with different content rates.
    Dang LT; Imai T; Le TV; Nishihara S; Higuchi T; Nguyen MK; Kanno A; Yamamoto K; Sekine M
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Sep; 51(11):930-7. PubMed ID: 27294417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of Design of Experiments and Response Surface Methodology to optimize biomass and lipid production by the oleaginous marine green alga, Nannochloropsis gaditana in response to light intensity, inoculum size and CO2.
    Hallenbeck PC; Grogger M; Mraz M; Veverka D
    Bioresour Technol; 2015 May; 184():161-168. PubMed ID: 25304731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing an effective feeding strategy to optimize crude glycerol utilization as sustainable carbon source for lipid accumulation in oleaginous yeasts.
    Signori L; Ami D; Posteri R; Giuzzi A; Mereghetti P; Porro D; Branduardi P
    Microb Cell Fact; 2016 May; 15():75. PubMed ID: 27149859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct bioconversion of rice residue from canteen waste into lipids by new amylolytic oleaginous yeast Sporidiobolus pararoseus KX709872.
    Chaiyaso T; Srisuwan W; Techapun C; Watanabe M; Takenaka S
    Prep Biochem Biotechnol; 2018 Apr; 48(4):361-371. PubMed ID: 29509070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.