BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 30710298)

  • 1. Mapping Calcium-Sensitive Regions in GCAPs by Site-Specific Fluorescence Labelling.
    Koch KW; Christoffers J
    Methods Mol Biol; 2019; 1929():583-594. PubMed ID: 30710298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping Calcium-Sensitive Regions in the Neuronal Calcium Sensor GCAP2 by Site-Specific Fluorescence Labeling.
    Sulmann S; Wallisch M; Scholten A; Christoffers J; Koch KW
    Biochemistry; 2016 May; 55(18):2567-77. PubMed ID: 27104297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing the Ca(2+) switch of the neuronal Ca(2+) sensor GCAP2 by time-resolved fluorescence spectroscopy.
    Kollmann H; Becker SF; Shirdel J; Scholten A; Ostendorp A; Lienau C; Koch KW
    ACS Chem Biol; 2012 Jun; 7(6):1006-14. PubMed ID: 22409623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The cone-specific calcium sensor guanylate cyclase activating protein 4 from the zebrafish retina.
    Behnen P; Scholten A; Rätscho N; Koch KW
    J Biol Inorg Chem; 2009 Jan; 14(1):89-99. PubMed ID: 18777180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential calcium signaling by cone specific guanylate cyclase-activating proteins from the zebrafish retina.
    Scholten A; Koch KW
    PLoS One; 2011; 6(8):e23117. PubMed ID: 21829700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca(2+)-dependent conformational changes in guanylyl cyclase-activating protein 2 (GCAP-2) revealed by site-specific phosphorylation and partial proteolysis.
    Peshenko IV; Olshevskaya EV; Dizhoor AM
    J Biol Chem; 2004 Nov; 279(48):50342-9. PubMed ID: 15448139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The myristoylation of the neuronal Ca2+ -sensors guanylate cyclase-activating protein 1 and 2.
    Hwang JY; Koch KW
    Biochim Biophys Acta; 2002 Nov; 1600(1-2):111-7. PubMed ID: 12445466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Irregular dimerization of guanylate cyclase-activating protein 1 mutants causes loss of target activation.
    Hwang JY; Schlesinger R; Koch KW
    Eur J Biochem; 2004 Sep; 271(18):3785-93. PubMed ID: 15355355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulatory function of the C-terminal segment of guanylate cyclase-activating protein 2.
    Zernii EY; Grigoriev II; Nazipova AA; Scholten A; Kolpakova TV; Zinchenko DV; Kazakov AS; Senin II; Permyakov SE; Dell'Orco D; Philippov PP; Koch KW
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1325-37. PubMed ID: 26001899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The myristoylation of guanylate cyclase-activating protein-2 causes an increase in thermodynamic stability in the presence but not in the absence of Ca²⁺.
    Schröder T; Lilie H; Lange C
    Protein Sci; 2011 Jul; 20(7):1155-65. PubMed ID: 21520322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ca2+ differently affects hydrophobic properties of guanylyl cyclase-activating proteins (GCAPs) and recoverin.
    Gorczyca WA; Kobiałka M; Kuropatwa M; Kurowska E
    Acta Biochim Pol; 2003; 50(2):367-76. PubMed ID: 12833163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retina specific GCAPs in zebrafish acquire functional selectivity in Ca2+-sensing by myristoylation and Mg2+-binding.
    Sulmann S; Vocke F; Scholten A; Koch KW
    Sci Rep; 2015 Jun; 5():11228. PubMed ID: 26061947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium- and myristoyl-dependent properties of guanylate cyclase-activating protein-1 and protein-2.
    Hwang JY; Koch KW
    Biochemistry; 2002 Oct; 41(43):13021-8. PubMed ID: 12390029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational changes in calcium-sensor proteins under molecular crowding conditions.
    Sulmann S; Dell'Orco D; Marino V; Behnen P; Koch KW
    Chemistry; 2014 May; 20(22):6756-62. PubMed ID: 24677478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular tuning of calcium dependent processes by neuronal calcium sensor proteins in the retina.
    Koch KW
    Biochim Biophys Acta Mol Cell Res; 2023 Aug; 1870(6):119491. PubMed ID: 37230154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A second calcium regulator of rod outer segment membrane guanylate cyclase, ROS-GC1: neurocalcin.
    Kumar VD; Vijay-Kumar S; Krishnan A; Duda T; Sharma RK
    Biochemistry; 1999 Sep; 38(39):12614-20. PubMed ID: 10504230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilizing function for myristoyl group revealed by the crystal structure of a neuronal calcium sensor, guanylate cyclase-activating protein 1.
    Stephen R; Bereta G; Golczak M; Palczewski K; Sousa MC
    Structure; 2007 Nov; 15(11):1392-402. PubMed ID: 17997965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dimerization domain in outer segment guanylate cyclase is a Ca²⁺-sensitive control switch module.
    Zägel P; Dell'Orco D; Koch KW
    Biochemistry; 2013 Jul; 52(30):5065-74. PubMed ID: 23815670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational changes in guanylate cyclase-activating protein 1 induced by Ca2+ and N-terminal fatty acid acylation.
    Orban T; Bereta G; Miyagi M; Wang B; Chance MR; Sousa MC; Palczewski K
    Structure; 2010 Jan; 18(1):116-26. PubMed ID: 20152158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-directed and natural mutations in studying functional domains in guanylyl cyclase activating proteins (GCAPs).
    Dizhoor A
    Adv Exp Med Biol; 2002; 514():291-301. PubMed ID: 12596928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.