These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 30710367)

  • 1. Targeting amyloid clearance in Alzheimer's disease as a therapeutic strategy.
    Nalivaeva NN; Turner AJ
    Br J Pharmacol; 2019 Sep; 176(18):3447-3463. PubMed ID: 30710367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular basis of selective amyloid-β degrading enzymes in Alzheimer's disease.
    Żukowska J; Moss SJ; Subramanian V; Acharya KR
    FEBS J; 2024 Jul; 291(14):2999-3029. PubMed ID: 37622248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alzheimer's disease.
    De-Paula VJ; Radanovic M; Diniz BS; Forlenza OV
    Subcell Biochem; 2012; 65():329-52. PubMed ID: 23225010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Powering Amyloid Beta Degrading Enzymes: A Possible Therapy for Alzheimer's Disease.
    Sikanyika NL; Parkington HC; Smith AI; Kuruppu S
    Neurochem Res; 2019 Jun; 44(6):1289-1296. PubMed ID: 30806879
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of Ageing and Oxidative Stress in Regulation of Amyloid-Degrading Enzymes and Development of Neurodegeneration.
    Nalivaeva NN; Turner AJ
    Curr Aging Sci; 2017; 10(1):32-40. PubMed ID: 27834125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Treating Alzheimer's disease by targeting iron.
    Nikseresht S; Bush AI; Ayton S
    Br J Pharmacol; 2019 Sep; 176(18):3622-3635. PubMed ID: 30632143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amyloid-beta protein clearance and degradation (ABCD) pathways and their role in Alzheimer's disease.
    Baranello RJ; Bharani KL; Padmaraju V; Chopra N; Lahiri DK; Greig NH; Pappolla MA; Sambamurti K
    Curr Alzheimer Res; 2015; 12(1):32-46. PubMed ID: 25523424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A short perspective on the long road to effective treatments for Alzheimer's disease.
    Reynolds DS
    Br J Pharmacol; 2019 Sep; 176(18):3636-3648. PubMed ID: 30657599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. GEPT extract reduces Abeta deposition by regulating the balance between production and degradation of Abeta in APPV717I transgenic mice.
    Tian J; Shi J; Zhang L; Yin J; Hu Q; Xu Y; Sheng S; Wang P; Ren Y; Wang R; Wang Y
    Curr Alzheimer Res; 2009 Apr; 6(2):118-31. PubMed ID: 19355846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are amyloid-degrading enzymes viable therapeutic targets in Alzheimer's disease?
    Nalivaeva NN; Beckett C; Belyaev ND; Turner AJ
    J Neurochem; 2012 Jan; 120 Suppl 1():167-185. PubMed ID: 22122230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Insights into Epigenetic and Pharmacological Regulation of Amyloid-Degrading Enzymes.
    Nalivaeva NN; Belyaev ND; Turner AJ
    Neurochem Res; 2016 Mar; 41(3):620-30. PubMed ID: 26376806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative inactivation of amyloid beta-degrading proteases by cholesterol-enhanced mitochondrial stress.
    de Dios C; Bartolessis I; Roca-Agujetas V; Barbero-Camps E; Mari M; Morales A; Colell A
    Redox Biol; 2019 Sep; 26():101283. PubMed ID: 31376793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Astrocyte-derived lactoferrin reduces β-amyloid burden by promoting the interaction between p38 kinase and PP2A phosphatase in male APP/PS1 transgenic mice.
    Fan YG; Guo C; Zhao LX; Ge RL; Pang ZQ; He DL; Ren H; Wu TY; Zhang YH; Wang ZY
    Br J Pharmacol; 2024 Mar; 181(6):896-913. PubMed ID: 37309219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative assessment of oligomeric amyloid β peptide binding to α7 nicotinic receptor.
    Cecon E; Dam J; Luka M; Gautier C; Chollet AM; Delagrange P; Danober L; Jockers R
    Br J Pharmacol; 2019 Sep; 176(18):3475-3488. PubMed ID: 30981214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aβ-degrading enzymes: potential for treatment of Alzheimer disease.
    Miners JS; Barua N; Kehoe PG; Gill S; Love S
    J Neuropathol Exp Neurol; 2011 Nov; 70(11):944-59. PubMed ID: 22002425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuroprotective effects of multifaceted hybrid agents targeting MAO, cholinesterase, iron and β-amyloid in ageing and Alzheimer's disease.
    Weinreb O; Amit T; Bar-Am O; Youdim MB
    Br J Pharmacol; 2016 Jul; 173(13):2080-94. PubMed ID: 26332830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Therapeutic targeting of nuclear receptors, liver X and retinoid X receptors, for Alzheimer's disease.
    Fitz NF; Nam KN; Koldamova R; Lefterov I
    Br J Pharmacol; 2019 Sep; 176(18):3599-3610. PubMed ID: 30924124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding molecular mechanisms of proteolysis in Alzheimer's disease: progress toward therapeutic interventions.
    Higuchi M; Iwata N; Saido TC
    Biochim Biophys Acta; 2005 Aug; 1751(1):60-7. PubMed ID: 16054018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The β-secretase (BACE) inhibitor NB-360 in preclinical models: From amyloid-β reduction to downstream disease-relevant effects.
    Neumann U; Machauer R; Shimshek DR
    Br J Pharmacol; 2019 Sep; 176(18):3435-3446. PubMed ID: 30657591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amyloid precursor protein-mediated mitochondrial regulation and Alzheimer's disease.
    Lopez Sanchez MIG; van Wijngaarden P; Trounce IA
    Br J Pharmacol; 2019 Sep; 176(18):3464-3474. PubMed ID: 30471088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.