These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 30710403)
1. Direct Production of Higher Oxygenates by Syngas Conversion over a Multifunctional Catalyst. Lin T; Qi X; Wang X; Xia L; Wang C; Yu F; Wang H; Li S; Zhong L; Sun Y Angew Chem Int Ed Engl; 2019 Mar; 58(14):4627-4631. PubMed ID: 30710403 [TBL] [Abstract][Full Text] [Related]
2. Role of Zr loading into In Portillo A; Ateka A; Ereña J; Bilbao J; Aguayo AT J Environ Manage; 2022 Aug; 316():115329. PubMed ID: 35658264 [TBL] [Abstract][Full Text] [Related]
3. Cobalt Carbide Nanocatalysts for Efficient Syngas Conversion to Value-Added Chemicals with High Selectivity. Lin T; Yu F; An Y; Qin T; Li L; Gong K; Zhong L; Sun Y Acc Chem Res; 2021 Apr; 54(8):1961-1971. PubMed ID: 33599477 [TBL] [Abstract][Full Text] [Related]
4. Enhanced Proximity of Rh Yu J; Liu T; Gu Q; Wang J; Han Y; Li G; Guo Q; Gu Y; Wu X; Gong X; Yang B; Mao D Angew Chem Int Ed Engl; 2024 May; 63(20):e202401568. PubMed ID: 38506189 [TBL] [Abstract][Full Text] [Related]
5. Direct production of olefins Wang X; Lin T; Li J; Yu F; Lv D; Qi X; Wang H; Zhong L; Sun Y RSC Adv; 2019 Jan; 9(8):4131-4139. PubMed ID: 35520170 [TBL] [Abstract][Full Text] [Related]
6. Direct Conversion of Syngas to Higher Alcohols via Tandem Integration of Fischer-Tropsch Synthesis and Reductive Hydroformylation. Jeske K; Rösler T; Belleflamme M; Rodenas T; Fischer N; Claeys M; Leitner W; Vorholt AJ; Prieto G Angew Chem Int Ed Engl; 2022 Aug; 61(31):e202201004. PubMed ID: 35491237 [TBL] [Abstract][Full Text] [Related]
7. Directly Converting Syngas to Linear α-Olefins over Core-Shell Fe Wang J; Xu Y; Ma G; Lin J; Wang H; Zhang C; Ding M ACS Appl Mater Interfaces; 2018 Dec; 10(50):43578-43587. PubMed ID: 30484308 [TBL] [Abstract][Full Text] [Related]
8. Direct and Highly Selective Conversion of Synthesis Gas into Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon-Carbon Coupling. Cheng K; Gu B; Liu X; Kang J; Zhang Q; Wang Y Angew Chem Int Ed Engl; 2016 Apr; 55(15):4725-8. PubMed ID: 26961855 [TBL] [Abstract][Full Text] [Related]
9. Design of efficient bifunctional catalysts for direct conversion of syngas into lower olefins Liu X; Zhou W; Yang Y; Cheng K; Kang J; Zhang L; Zhang G; Min X; Zhang Q; Wang Y Chem Sci; 2018 May; 9(20):4708-4718. PubMed ID: 29899966 [TBL] [Abstract][Full Text] [Related]
10. Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Zhong L; Yu F; An Y; Zhao Y; Sun Y; Li Z; Lin T; Lin Y; Qi X; Dai Y; Gu L; Hu J; Jin S; Shen Q; Wang H Nature; 2016 Oct; 538(7623):84-87. PubMed ID: 27708303 [TBL] [Abstract][Full Text] [Related]
11. Formation of C Ling L; Wang Q; Zhang R; Li D; Wang B Phys Chem Chem Phys; 2017 Nov; 19(45):30883-30894. PubMed ID: 29134992 [TBL] [Abstract][Full Text] [Related]
12. Design of Cobalt Fischer-Tropsch Catalysts for the Combined Production of Liquid Fuels and Olefin Chemicals from Hydrogen-Rich Syngas. Jeske K; Kizilkaya AC; López-Luque I; Pfänder N; Bartsch M; Concepción P; Prieto G ACS Catal; 2021 Apr; 11(8):4784-4798. PubMed ID: 33889436 [TBL] [Abstract][Full Text] [Related]
13. A hydrophobic FeMn@Si catalyst increases olefins from syngas by suppressing C1 by-products. Xu Y; Li X; Gao J; Wang J; Ma G; Wen X; Yang Y; Li Y; Ding M Science; 2021 Feb; 371(6529):610-613. PubMed ID: 33542132 [TBL] [Abstract][Full Text] [Related]
14. Co-Al nanosheets derived from LDHs and their catalytic performance for syngas conversion. Luo M; Xu S; Gu Q; Di Z; Liu Q; Zhao Z J Colloid Interface Sci; 2019 Mar; 538():440-448. PubMed ID: 30530082 [TBL] [Abstract][Full Text] [Related]
15. Recent advances in Co Yu F; Lin T; An Y; Gong K; Wang X; Sun Y; Zhong L Chem Commun (Camb); 2022 Aug; 58(70):9712-9727. PubMed ID: 35972448 [TBL] [Abstract][Full Text] [Related]
16. The role of intermediate Co Liu S; Sun B; Zhang Y; Li J; Resasco DE; Nie L; Wang L Chem Commun (Camb); 2019 Jun; 55(46):6595-6598. PubMed ID: 31119229 [TBL] [Abstract][Full Text] [Related]
17. Direct production of olefins from syngas with ultrahigh carbon efficiency. Yu H; Wang C; Lin T; An Y; Wang Y; Chang Q; Yu F; Wei Y; Sun F; Jiang Z; Li S; Sun Y; Zhong L Nat Commun; 2022 Oct; 13(1):5987. PubMed ID: 36217004 [TBL] [Abstract][Full Text] [Related]
18. New horizon in C1 chemistry: breaking the selectivity limitation in transformation of syngas and hydrogenation of CO Zhou W; Cheng K; Kang J; Zhou C; Subramanian V; Zhang Q; Wang Y Chem Soc Rev; 2019 Jun; 48(12):3193-3228. PubMed ID: 31106785 [TBL] [Abstract][Full Text] [Related]
19. Tandem Reactions over Zeolite-Based Catalysts in Syngas Conversion. Amoo CC; Xing C; Tsubaki N; Sun J ACS Cent Sci; 2022 Aug; 8(8):1047-1062. PubMed ID: 36032758 [TBL] [Abstract][Full Text] [Related]
20. Direct Conversion of Syngas into Methyl Acetate, Ethanol, and Ethylene by Relay Catalysis via the Intermediate Dimethyl Ether. Zhou W; Kang J; Cheng K; He S; Shi J; Zhou C; Zhang Q; Chen J; Peng L; Chen M; Wang Y Angew Chem Int Ed Engl; 2018 Sep; 57(37):12012-12016. PubMed ID: 30063282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]