These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 30710403)

  • 21. Highly Selective Photocatalytic Aerobic Oxidation of Methane to Oxygenates with Water over W-doped TiO
    Huang M; Zhang S; Wu B; Yu X; Gan Y; Lin T; Yu F; Sun Y; Zhong L
    ChemSusChem; 2022 Jul; 15(14):e202200548. PubMed ID: 35502630
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxide-Zeolite-Based Composite Catalyst Concept That Enables Syngas Chemistry beyond Fischer-Tropsch Synthesis.
    Pan X; Jiao F; Miao D; Bao X
    Chem Rev; 2021 Jun; 121(11):6588-6609. PubMed ID: 34032417
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of the ZnCrAl Oxide Composition on the Formation of Hydrocarbons from Syngas.
    Kull T; Wiesmann T; Wilmsen A; Purcel M; Muhler M; Lohmann H; Zeidler-Fandrich B; Apfel UP
    ACS Omega; 2022 Nov; 7(47):42994-43005. PubMed ID: 36467945
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Syngas to light olefins conversion with high olefin/paraffin ratio using ZnCrO
    Su J; Zhou H; Liu S; Wang C; Jiao W; Wang Y; Liu C; Ye Y; Zhang L; Zhao Y; Liu H; Wang D; Yang W; Xie Z; He M
    Nat Commun; 2019 Mar; 10(1):1297. PubMed ID: 30899003
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tandem Hydrogenolysis-Hydrogenation of Lignin-Derived Oxygenates over Integrated Dual Catalysts with Optimized Interoperations.
    Fang H; Chen W; Li S; Li X; Duan X; Ye L; Yuan Y
    ChemSusChem; 2019 Dec; 12(23):5199-5206. PubMed ID: 31647183
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Unleashing the Full Potential of Photo-Driven CO Hydrogenation to Light Olefins over Carbon-Coated CoMn-Based Catalysts.
    Li R; Li Y; Li Z; Ouyang S; Yuan H; Zhang T
    Adv Mater; 2023 Nov; 35(44):e2307217. PubMed ID: 37704217
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cobalt-Iron-Manganese Catalysts for the Conversion of End-of-Life-Tire-Derived Syngas into Light Terminal Olefins.
    Falkenhagen JP; Maisonneuve L; Paalanen PP; Coste N; Malicki N; Weckhuysen BM
    Chemistry; 2018 Mar; 24(18):4597-4606. PubMed ID: 29493817
    [TBL] [Abstract][Full Text] [Related]  

  • 28. On-line gas chromatographic analysis of higher alcohol synthesis products from syngas.
    Andersson R; Boutonnet M; Järås S
    J Chromatogr A; 2012 Jul; 1247():134-45. PubMed ID: 22687712
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intrinsic Selectivity and Structure Sensitivity of Rhodium Catalysts for C(2+) Oxygenate Production.
    Yang N; Medford AJ; Liu X; Studt F; Bligaard T; Bent SF; Nørskov JK
    J Am Chem Soc; 2016 Mar; 138(11):3705-14. PubMed ID: 26958997
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanostructured NiMoS₂/Carbon Catalysts for Syngas Conversion to Higher Alcohols.
    Aslam W; Ma Q; Tang F; Chen J; Beltramini J; Rudolph V; Wang G; Konarova M
    J Nanosci Nanotechnol; 2020 Aug; 20(8):5260-5266. PubMed ID: 32126728
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Direct Conversion of Syngas to Light Olefins over a ZnCrO
    Huang Y; Ma H; Xu Z; Qian W; Zhang H; Ying W
    ACS Omega; 2021 Apr; 6(16):10953-10962. PubMed ID: 34056248
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Controlled Nanostructure of Zeolite Crystal Encapsulating FeMnK Catalysts Targeting Light Olefins from Syngas.
    Zhu C; Zhang M; Huang C; Han Y; Fang K
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):57950-57962. PubMed ID: 33337154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Breakthrough in the direct conversion of methane into c1-oxygenates.
    Barbero JA; Alvarez MC; Banñares MA; Peña MA; Fierro JL
    Chem Commun (Camb); 2002 Jun; (11):1184-5. PubMed ID: 12109073
    [TBL] [Abstract][Full Text] [Related]  

  • 34. One-pass selective conversion of syngas to
    Zhang P; Tan L; Yang G; Tsubaki N
    Chem Sci; 2017 Dec; 8(12):7941-7946. PubMed ID: 29619167
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High yield electrosynthesis of oxygenates from CO using a relay Cu-Ag co-catalyst system.
    Meng N; Wu Z; Huang Y; Zhang J; Chen M; Ma H; Li H; Xi S; Lin M; Wu W; Han S; Yu Y; Yang QH; Zhang B; Loh KP
    Nat Commun; 2024 May; 15(1):3892. PubMed ID: 38719816
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly Selective Production of Ethylene by the Electroreduction of Carbon Monoxide.
    Chen R; Su HY; Liu D; Huang R; Meng X; Cui X; Tian ZQ; Zhang DH; Deng D
    Angew Chem Int Ed Engl; 2020 Jan; 59(1):154-160. PubMed ID: 31697030
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding Structure-Property Relationships of MoO
    Asundi AS; Hoffman AS; Bothra P; Boubnov A; Vila FD; Yang N; Singh JA; Zeng L; Raiford JA; Abild-Pedersen F; Bare SR; Bent SF
    J Am Chem Soc; 2019 Dec; 141(50):19655-19668. PubMed ID: 31724857
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly Tunable Selectivity for Syngas-Derived Alkenes over Zinc and Sodium-Modulated Fe5 C2 Catalyst.
    Zhai P; Xu C; Gao R; Liu X; Li M; Li W; Fu X; Jia C; Xie J; Zhao M; Wang X; Li YW; Zhang Q; Wen XD; Ma D
    Angew Chem Int Ed Engl; 2016 Aug; 55(34):9902-7. PubMed ID: 27445106
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relay Catalysis for Highly Selective Conversion of Methanol to Ethylene in Syngas.
    Chen K; Wang F; Wang Y; Zhang F; Huang X; Kang J; Zhang Q; Wang Y
    JACS Au; 2023 Oct; 3(10):2894-2904. PubMed ID: 37885567
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent Advances in Direct Synthesis of Value-Added Aromatic Chemicals from Syngas by Cascade Reactions over Bifunctional Catalysts.
    Kasipandi S; Bae JW
    Adv Mater; 2019 Aug; 31(34):e1803390. PubMed ID: 30767328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.