BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 30710419)

  • 1. CRISPR-Cas-Mediated Chemical Control of Transcriptional Dynamics in Yeast.
    Cunningham-Bryant D; Sun J; Fernandez B; Zalatan JG
    Chembiochem; 2019 Jun; 20(12):1519-1523. PubMed ID: 30710419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds.
    Zalatan JG; Lee ME; Almeida R; Gilbert LA; Whitehead EH; La Russa M; Tsai JC; Weissman JS; Dueber JE; Qi LS; Lim WA
    Cell; 2015 Jan; 160(1-2):339-50. PubMed ID: 25533786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene Manipulation Using Fusion Guide RNAs for Cas9 and Cas12a.
    Shin HR; Kweon J; Kim Y
    Methods Mol Biol; 2021; 2162():185-193. PubMed ID: 32926383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conditional Recruitment to a DNA-Bound CRISPR-Cas Complex Using a Colocalization-Dependent Protein Switch.
    Kirkpatrick RL; Lewis K; Langan RA; Lajoie MJ; Boyken SE; Eakman M; Baker D; Zalatan JG
    ACS Synth Biol; 2020 Sep; 9(9):2316-2323. PubMed ID: 32816470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delivery Aspects of CRISPR/Cas for in Vivo Genome Editing.
    Wilbie D; Walther J; Mastrobattista E
    Acc Chem Res; 2019 Jun; 52(6):1555-1564. PubMed ID: 31099553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scaffold RNA engineering in type V CRISPR-Cas systems: a potent way to enhance gene expression in the yeast Saccharomyces cerevisiae.
    Yu L; Marchisio MA
    Nucleic Acids Res; 2024 Feb; 52(3):1483-1497. PubMed ID: 38142459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling CRISPR-Cas9 with ligand-activated and ligand-deactivated sgRNAs.
    Kundert K; Lucas JE; Watters KE; Fellmann C; Ng AH; Heineike BM; Fitzsimmons CM; Oakes BL; Qu J; Prasad N; Rosenberg OS; Savage DF; El-Samad H; Doudna JA; Kortemme T
    Nat Commun; 2019 May; 10(1):2127. PubMed ID: 31073154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design.
    Smith JD; Suresh S; Schlecht U; Wu M; Wagih O; Peltz G; Davis RW; Steinmetz LM; Parts L; St Onge RP
    Genome Biol; 2016 Mar; 17():45. PubMed ID: 26956608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Cas-Assisted Multiplexing (CAM): Simple Same-Day Multi-Locus Engineering in Yeast.
    Walter JM; Chandran SS; Horwitz AA
    J Cell Physiol; 2016 Dec; 231(12):2563-9. PubMed ID: 26991244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic Engineering of Saccharomyces cerevisiae Using a Trifunctional CRISPR/Cas System for Simultaneous Gene Activation, Interference, and Deletion.
    Schultz C; Lian J; Zhao H
    Methods Enzymol; 2018; 608():265-276. PubMed ID: 30173764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new inducible CRISPR-Cas9 system useful for genome editing and study of double-strand break repair in Candida glabrata.
    Maroc L; Fairhead C
    Yeast; 2019 Dec; 36(12):723-731. PubMed ID: 31423617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR-Mediated Activation of Biosynthetic Gene Clusters for Bioactive Molecule Discovery in Filamentous Fungi.
    Roux I; Woodcraft C; Hu J; Wolters R; Gilchrist CLM; Chooi YH
    ACS Synth Biol; 2020 Jul; 9(7):1843-1854. PubMed ID: 32526136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroporation-Based CRISPR/Cas9 Gene Editing Using Cas9 Protein and Chemically Modified sgRNAs.
    Laustsen A; Bak RO
    Methods Mol Biol; 2019; 1961():127-134. PubMed ID: 30912044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Performance Allosteric Conditional Guide RNAs for Mammalian Cell-Selective Regulation of CRISPR/Cas.
    Hochrein LM; Li H; Pierce NA
    ACS Synth Biol; 2021 May; 10(5):964-971. PubMed ID: 33930275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid Assembly of gRNA Arrays via Modular Cloning in Yeast.
    McCarty NS; Shaw WM; Ellis T; Ledesma-Amaro R
    ACS Synth Biol; 2019 Apr; 8(4):906-910. PubMed ID: 30939239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simple CRISPR-Cas9 Genome Editing in Saccharomyces cerevisiae.
    Laughery MF; Wyrick JJ
    Curr Protoc Mol Biol; 2019 Dec; 129(1):e110. PubMed ID: 31763795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A natural single-guide RNA repurposes Cas9 to autoregulate CRISPR-Cas expression.
    Workman RE; Pammi T; Nguyen BTK; Graeff LW; Smith E; Sebald SM; Stoltzfus MJ; Euler CW; Modell JW
    Cell; 2021 Feb; 184(3):675-688.e19. PubMed ID: 33421369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A gRNA-tRNA array for CRISPR-Cas9 based rapid multiplexed genome editing in Saccharomyces cerevisiae.
    Zhang Y; Wang J; Wang Z; Zhang Y; Shi S; Nielsen J; Liu Z
    Nat Commun; 2019 Mar; 10(1):1053. PubMed ID: 30837474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Split-and-Click" sgRNA.
    Taemaitree L; Shivalingam A; El-Sagheer AH; Brown T
    Methods Mol Biol; 2021; 2162():61-78. PubMed ID: 32926378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Building Endogenous Gene Connections through RNA Self-Assembly Controlled CRISPR/Cas9 Function.
    Lin J; Wang WJ; Wang Y; Liu Y; Xu L
    J Am Chem Soc; 2021 Dec; 143(47):19834-19843. PubMed ID: 34788038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.