These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 30710586)

  • 1. Production of bacterial nanocellulose (BNC) and its application as a solid support in transition metal catalysed cross-coupling reactions.
    Jeremic S; Djokic L; Ajdačić V; Božinović N; Pavlovic V; Manojlović DD; Babu R; Senthamaraikannan R; Rojas O; Opsenica I; Nikodinovic-Runic J
    Int J Biol Macromol; 2019 May; 129():351-360. PubMed ID: 30710586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response surface statistical optimization of bacterial nanocellulose fermentation in static culture using a low-cost medium.
    Rodrigues AC; Fontão AI; Coelho A; Leal M; Soares da Silva FAG; Wan Y; Dourado F; Gama M
    N Biotechnol; 2019 Mar; 49():19-27. PubMed ID: 30529474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting Bacterial Nanocellulose Properties through Tailored Downstream Techniques.
    Da Silva Pereira EH; Mojicevic M; Tas CE; Lanzagorta Garcia E; Brennan Fournet M
    Polymers (Basel); 2024 Mar; 16(5):. PubMed ID: 38475361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial nanocellulose production and application: a 10-year overview.
    Jozala AF; de Lencastre-Novaes LC; Lopes AM; de Carvalho Santos-Ebinuma V; Mazzola PG; Pessoa A; Grotto D; Gerenutti M; Chaud MV
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2063-72. PubMed ID: 26743657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytically Active Bacterial Nanocellulose-Based Ultrafiltration Membrane.
    Xu T; Jiang Q; Ghim D; Liu KK; Sun H; Derami HG; Wang Z; Tadepalli S; Jun YS; Zhang Q; Singamaneni S
    Small; 2018 Apr; 14(15):e1704006. PubMed ID: 29516638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An easily recoverable and highly reproducible agar-supported palladium catalyst for Suzuki-Miyaura coupling reactions and reduction of o-nitroaniline.
    Baran T; Yılmaz Baran N; Menteş A
    Int J Biol Macromol; 2018 Aug; 115():249-256. PubMed ID: 29660458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacterial nanocellulose: Present status, biomedical applications and future perspectives.
    Sharma C; Bhardwaj NK
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109963. PubMed ID: 31499992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel surface modification of three-dimensional bacterial nanocellulose with cell-derived adhesion proteins for soft tissue engineering.
    Osorio M; Ortiz I; Gañán P; Naranjo T; Zuluaga R; van Kooten TG; Castro C
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():697-705. PubMed ID: 30948106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Suzuki-Miyaura cross-coupling reaction by loading trace Pd nanoparticles onto copper-complex-derived Cu/C-700 solid support.
    Sun L; Li Q; Zheng M; Lin S; Guo C; Luo L; Guo S; Li Y; Wang C; Jiang B
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2463-2471. PubMed ID: 34763890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial nanocellulose as green support of platinum nanoparticles for effective methanol oxidation.
    Ponjavic M; Stevanovic S; Nikodinovic-Runic J; Jeremic S; Cosovic VR; Maksimovic V
    Int J Biol Macromol; 2022 Dec; 223(Pt A):1474-1484. PubMed ID: 36351528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel approach for efficient fabrication of chitosan nanoparticles-embedded bacterial nanocellulose conduits.
    Wei Z; Pan P; Hong FF; Cao Z; Ji Y; Chen L
    Carbohydr Polym; 2021 Jul; 264():118002. PubMed ID: 33910735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-structured bacterial nanocellulose hydrogels support ingrowth and differentiation of chondrocytes and show potential as cartilage implants.
    Ahrem H; Pretzel D; Endres M; Conrad D; Courseau J; Müller H; Jaeger R; Kaps C; Klemm DO; Kinne RW
    Acta Biomater; 2014 Mar; 10(3):1341-53. PubMed ID: 24334147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carbon-supported palladium and ruthenium nanoparticles: application as catalysts in alcohol oxidation, cross-coupling and hydrogenation reactions.
    García-Suárez EJ; Lara P; García AB; Philippot K
    Recent Pat Nanotechnol; 2013 Nov; 7(3):247-64. PubMed ID: 22946626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Homeopathic" palladium nanoparticle catalysis of cross carbon-carbon coupling reactions.
    Deraedt C; Astruc D
    Acc Chem Res; 2014 Feb; 47(2):494-503. PubMed ID: 24215156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotransformation of fermented black tea into bacterial nanocellulose via symbiotic interplay of microorganisms.
    Sharma C; Bhardwaj NK
    Int J Biol Macromol; 2019 Jul; 132():166-177. PubMed ID: 30928367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modification of bacterial nanocellulose properties through mutation of motility related genes in Komagataeibacter hansenii ATCC 53582.
    Jacek P; Kubiak K; Ryngajłło M; Rytczak P; Paluch P; Bielecki S
    N Biotechnol; 2019 Sep; 52():60-68. PubMed ID: 31096013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pd-Loaded Cellulose NanoSponge as a Heterogeneous Catalyst for Suzuki-Miyaura Coupling Reactions.
    Riva L; Nicastro G; Liu M; Battocchio C; Punta C; Sacchetti A
    Gels; 2022 Dec; 8(12):. PubMed ID: 36547313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of cellulose nanocrystal addition on the production and characterization of bacterial nanocellulose.
    Bang WY; Adedeji OE; Kang HJ; Kang MD; Yang J; Lim YW; Jung YH
    Int J Biol Macromol; 2021 Dec; 193(Pt A):269-275. PubMed ID: 34695495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Palladium Nanoparticles Immobilized on Individual Calcium Carbonate Plates Derived from Mussel Shell Waste: An Ecofriendly Catalyst for the Copper-Free Sonogashira Coupling Reaction.
    Saetan T; Lertvachirapaiboon C; Ekgasit S; Sukwattanasinitt M; Wacharasindhu S
    Chem Asian J; 2017 Sep; 12(17):2221-2230. PubMed ID: 28544781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size control and catalytic activity of bio-supported palladium nanoparticles.
    Søbjerg LS; Lindhardt AT; Skrydstrup T; Finster K; Meyer RL
    Colloids Surf B Biointerfaces; 2011 Jul; 85(2):373-8. PubMed ID: 21481574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.