BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 30710619)

  • 1. Microbiological performance of a robotic system for aseptic compounding of cytostatic drugs.
    Geersing TH; Franssen EJF; Pilesi F; Crul M
    Eur J Pharm Sci; 2019 Mar; 130():181-185. PubMed ID: 30710619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Media-fill simulation tests in manual and robotic aseptic preparation of injection solutions in syringes.
    Krämer I; Federici M; Kaiser V; Thiesen J
    J Oncol Pharm Pract; 2016 Apr; 22(2):195-204. PubMed ID: 25549919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implementation and microbiological stability of dose-banded ganciclovir infusion bags prepared in series by a robotic system.
    Krämer I; Federici M
    Eur J Hosp Pharm; 2020 Jul; 27(4):209-215. PubMed ID: 32587079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbiological validation of a robot for the sterile compounding of injectable non-hazardous medications in a hospital environment.
    Sabatini L; Paolucci D; Marinelli F; Pianetti A; Sbaffo M; Bufarini C; Sisti M
    Eur J Hosp Pharm; 2020 Mar; 27(e1):e63-e68. PubMed ID: 32296508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Qualification of a chemotherapy-compounding robot.
    Jobard M; Brandely-Piat ML; Chast F; Batista R
    J Oncol Pharm Pract; 2020 Mar; 26(2):312-324. PubMed ID: 30997871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The assessment of environmental and external cross-contamination in preparing ready-to-administer cytotoxic drugs: a comparison between a robotic system and conventional manual production.
    Werumeus Buning A; Geersing TH; Crul M
    Int J Pharm Pract; 2020 Feb; 28(1):66-74. PubMed ID: 31489970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential for airborne contamination in turbulent- and unidirectional-airflow compounding aseptic isolators.
    Peters GF; McKeon MR; Weiss WT
    Am J Health Syst Pharm; 2007 Mar; 64(6):622-31. PubMed ID: 17353571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental contamination by cyclophosphamide preparation: Comparison of conventional manual production in biological safety cabinet and robot-assisted production by APOTECAchemo.
    Schierl R; Masini C; Groeneveld S; Fischer E; Böhlandt A; Rosini V; Paolucci D
    J Oncol Pharm Pract; 2016 Feb; 22(1):37-45. PubMed ID: 25227229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aseptic simulation test challenged with microorganisms for validation of pharmacy operators.
    Sigward E; Fourgeaud M; Vazquez R; Guerrault-Moro MN; Brossard D; Crauste-Manciet S
    Am J Health Syst Pharm; 2012 Jul; 69(14):1218-24. PubMed ID: 22761076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of two work practice changes on the microbial contamination rates of pharmacy-compounded sterile preparations.
    Trissel LA; Gentempo JA; Saenz LM; Woodard MY; Angeles CH
    Am J Health Syst Pharm; 2007 Apr; 64(8):837-41. PubMed ID: 17420200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Choosing a Vial Processing Line for Aseptic Compounding: Part 1.
    Noorian S; Vahedi N
    Int J Pharm Compd; 2016; 20(4):283-292. PubMed ID: 28333673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of ultraviolet irradiation efficacy in an automated system for the aseptic compounding using challenge test.
    Bruscolini F; Paolucci D; Rosini V; Sabatini L; Andreozzi E; Pianetti A
    Int J Qual Health Care; 2015 Oct; 27(5):412-7. PubMed ID: 26233490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A three-year study of a first-generation chemotherapy-compounding robot.
    Nurgat Z; Faris D; Mominah M; Vibar A; Al-Jazairi A; Ewing S; Ashour M; Qaisi SK; Balhareth S; Al-Jedai A
    Am J Health Syst Pharm; 2015 Jun; 72(12):1036-45. PubMed ID: 26025995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robotic compounding versus manual compounding of chemotherapy: Comparing dosing accuracy and precision.
    Geersing TH; Klous MG; Franssen EJF; van den Heuvel JJG; Crul M
    Eur J Pharm Sci; 2020 Dec; 155():105536. PubMed ID: 32877721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation program of a cytotoxic compounding robot for monoclonal antibodies and anti-infectious sterile drug preparation.
    Deljehier T; Bouguéon G; Heloury J; Moreno V; Berroneau A; Crauste-Manciet S
    J Oncol Pharm Pract; 2019 Dec; 25(8):1873-1890. PubMed ID: 30651029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved aseptic technique can reduce variable contamination rates of ward-prepared parenteral doses.
    Austin P; Elia M
    J Hosp Infect; 2013 Feb; 83(2):160-3. PubMed ID: 23313030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parenterals laboratory course to reduce microbial contamination rates in media fill tests performed by pharmacy students.
    Isanhart CM; McCall KL; Kretschmer D; Grimes BA
    Am J Pharm Educ; 2008 Apr; 72(2):27. PubMed ID: 18483595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficacy of four cleaning solutions for the decontamination of selected cytotoxic drugs on the different surfaces of an automated compounding system.
    Federici M; Raffaelli J; Paolucci D; Schierl R; Krämer I
    J Occup Environ Hyg; 2019 Jan; 16(1):6-15. PubMed ID: 30230976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation of an i.v.-compounding robot in a hospital-based cancer center pharmacy.
    Yaniv AW; Knoer SJ
    Am J Health Syst Pharm; 2013 Nov; 70(22):2030-7. PubMed ID: 24173011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. I.V. admixture contamination rates: traditional practice site versus a class 1000 cleanroom.
    Thomas M; Sanborn MD; Couldry R
    Am J Health Syst Pharm; 2005 Nov; 62(22):2386-92. PubMed ID: 16278330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.