BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 30710755)

  • 1. A flyover style microfluidic chip for highly purified magnetic cell separation.
    Lin S; Zhi X; Chen D; Xia F; Shen Y; Niu J; Huang S; Song J; Miao J; Cui D; Ding X
    Biosens Bioelectron; 2019 Mar; 129():175-181. PubMed ID: 30710755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic immunomagnetic cell separation from whole blood.
    Bhuvanendran Nair Gourikutty S; Chang CP; Puiu PD
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Feb; 1011():77-88. PubMed ID: 26773879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes.
    Li X; Chen W; Liu G; Lu W; Fu J
    Lab Chip; 2014 Jul; 14(14):2565-75. PubMed ID: 24895109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrated on-chip platform for negative enrichment of tumour cells.
    Bhuvanendran Nair Gourikutty S; Chang CP; Poenar DP
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Aug; 1028():153-164. PubMed ID: 27344255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous Separation of White Blood Cells From Whole Blood Using Viscoelastic Effects.
    Tan JKS; Park SY; Leo HL; Kim S
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1431-1437. PubMed ID: 28981424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Micropump integrated white blood cell separation platform for detection of chronic granulomatous disease.
    Mane S; Behera A; Hemadri V; Bhand S; Tripathi S
    Mikrochim Acta; 2024 May; 191(5):295. PubMed ID: 38700804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous isolation of monocytes using a magnetophoretic-based microfluidic Chip.
    Darabi J; Guo C
    Biomed Microdevices; 2016 Oct; 18(5):77. PubMed ID: 27518600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective isolation of magnetic nanoparticle-mediated heterogeneity subpopulation of circulating tumor cells using magnetic gradient based microfluidic system.
    Kwak B; Lee J; Lee D; Lee K; Kwon O; Kang S; Kim Y
    Biosens Bioelectron; 2017 Feb; 88():153-158. PubMed ID: 27503409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic-based microfluidic platform for biomolecular separation.
    Ramadan Q; Samper V; Poenar D; Yu C
    Biomed Microdevices; 2006 Jun; 8(2):151-8. PubMed ID: 16688574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-stage microfluidic chip for selective isolation of circulating tumor cells (CTCs).
    Hyun KA; Lee TY; Lee SH; Jung HI
    Biosens Bioelectron; 2015 May; 67():86-92. PubMed ID: 25060749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics.
    Zhang J; Yuan D; Sluyter R; Yan S; Zhao Q; Xia H; Tan SH; Nguyen NT; Li W
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1422-1430. PubMed ID: 28866599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple microfluidic device for the deformability assessment of blood cells in a continuous flow.
    Rodrigues RO; Pinho D; Faustino V; Lima R
    Biomed Microdevices; 2015 Dec; 17(6):108. PubMed ID: 26482154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated leukocyte processing by microfluidic deterministic lateral displacement.
    Civin CI; Ward T; Skelley AM; Gandhi K; Peilun Lee Z; Dosier CR; D'Silva JL; Chen Y; Kim M; Moynihan J; Chen X; Aurich L; Gulnik S; Brittain GC; Recktenwald DJ; Austin RH; Sturm JC
    Cytometry A; 2016 Dec; 89(12):1073-1083. PubMed ID: 27875619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paramagnetic Structures within a Microfluidic Channel for Enhanced Immunomagnetic Isolation and Surface Patterning of Cells.
    Sun C; Hassanisaber H; Yu R; Ma S; Verbridge SS; Lu C
    Sci Rep; 2016 Jul; 6():29407. PubMed ID: 27388549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic Nickel iron Electroformed Trap (MagNET): a master/replica fabrication strategy for ultra-high throughput (>100 mL h(-1)) immunomagnetic sorting.
    Ko J; Yelleswarapu V; Singh A; Shah N; Issadore D
    Lab Chip; 2016 Aug; 16(16):3049-57. PubMed ID: 27170379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymer-based microfluidic chip for rapid and efficient immunomagnetic capture and release of Listeria monocytogenes.
    Malic L; Zhang X; Brassard D; Clime L; Daoud J; Luebbert C; Barrere V; Boutin A; Bidawid S; Farber J; Corneau N; Veres T
    Lab Chip; 2015 Oct; 15(20):3994-4007. PubMed ID: 26346021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High gradient magnetic field microstructures for magnetophoretic cell separation.
    Abdel Fattah AR; Ghosh S; Puri IK
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Aug; 1027():194-9. PubMed ID: 27294532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microfluidic device for continuous white blood cell separation and lysis from whole blood.
    Kim M; Mo Jung S; Lee KH; Jun Kang Y; Yang S
    Artif Organs; 2010 Nov; 34(11):996-1002. PubMed ID: 21092042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembled magnetic filter for highly efficient immunomagnetic separation.
    Issadore D; Shao H; Chung J; Newton A; Pittet M; Weissleder R; Lee H
    Lab Chip; 2011 Jan; 11(1):147-51. PubMed ID: 20949198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Assembled Permanent Micro-Magnets in a Polymer-Based Microfluidic Device for Magnetic Cell Sorting.
    Descamps L; Audry MC; Howard J; Mekkaoui S; Albin C; Barthelemy D; Payen L; Garcia J; Laurenceau E; Le Roy D; Deman AL
    Cells; 2021 Jul; 10(7):. PubMed ID: 34359904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.