These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 30710787)
41. Tracing fine sediment sources in small mountain catchment. Kouhpeima A; Feiznia S; Ahmadi H Water Sci Technol; 2011; 63(10):2324-30. PubMed ID: 21977656 [TBL] [Abstract][Full Text] [Related]
42. Enhancing sub-catchment sediment source fingerprinting using chemometric models for DRIFTS in different particle size subfractions. Nosrati K; Ghasemi M; Fiener P Sci Total Environ; 2024 Oct; 946():174413. PubMed ID: 38960180 [TBL] [Abstract][Full Text] [Related]
43. Using biomarkers as fingerprint properties to identify sediment sources in a small catchment. Chen F; Fang N; Shi Z Sci Total Environ; 2016 Jul; 557-558():123-33. PubMed ID: 26994800 [TBL] [Abstract][Full Text] [Related]
44. Determining tributary sources of increased sedimentation in East-African Rift Lakes. Wynants M; Millward G; Patrick A; Taylor A; Munishi L; Mtei K; Brendonck L; Gilvear D; Boeckx P; Ndakidemi P; Blake WH Sci Total Environ; 2020 May; 717():137266. PubMed ID: 32084693 [TBL] [Abstract][Full Text] [Related]
45. Building a library of source samples for sediment fingerprinting - Potential and proof of concept. Williamson TN; Fitzpatrick FA; Kreiling RM J Environ Manage; 2023 May; 333():117254. PubMed ID: 36805295 [TBL] [Abstract][Full Text] [Related]
46. Sensitivity of fluvial sediment source apportionment to mixing model assumptions: A Bayesian model comparison. Cooper RJ; Krueger T; Hiscock KM; Rawlins BG Water Resour Res; 2014 Nov; 50(11):9031-9047. PubMed ID: 26612962 [TBL] [Abstract][Full Text] [Related]
47. Characterization and quantification of suspended sediment sources to the Manawatu River, New Zealand. Vale SS; Fuller IC; Procter JN; Basher LR; Smith IE Sci Total Environ; 2016 Feb; 543(Pt A):171-186. PubMed ID: 26580740 [TBL] [Abstract][Full Text] [Related]
48. Magnetic susceptibility as a simple tracer for fluvial sediment source ascription during storm events. Rowntree KM; van der Waal BW; Pulley S J Environ Manage; 2017 Jun; 194():54-62. PubMed ID: 27939776 [TBL] [Abstract][Full Text] [Related]
49. The spatio-temporal dynamics of suspended sediment sources based on a novel indexing approach combining Bayesian geochemical fingerprinting with physically-based modelling. Das A; Remesan R; Collins AL; Gupta AK J Environ Manage; 2023 Nov; 345():118649. PubMed ID: 37481881 [TBL] [Abstract][Full Text] [Related]
50. Fingerprinting suspended sediment sources in a large urban river system. Carter J; Owens PN; Walling DE; Leeks GJ Sci Total Environ; 2003 Oct; 314-316():513-34. PubMed ID: 14499548 [TBL] [Abstract][Full Text] [Related]
51. Combining multiple methods for provenance discrimination based on rare earth element geochemistry in lake sediment. Wang L; Han X; Ding S; Liang T; Zhang Y; Xiao J; Dong L; Zhang H Sci Total Environ; 2019 Jul; 672():264-274. PubMed ID: 30959293 [TBL] [Abstract][Full Text] [Related]
52. Subsoil erosion dominates the supply of fine sediment to rivers draining into Princess Charlotte Bay, Australia. Olley J; Brooks A; Spencer J; Pietsch T; Borombovits D J Environ Radioact; 2013 Oct; 124():121-9. PubMed ID: 23727879 [TBL] [Abstract][Full Text] [Related]
53. Discrimination of rare earth element geochemistry and co-occurrence in sediment from Poyang Lake, the largest freshwater lake in China. Wang L; Han X; Liang T; Guo Q; Li J; Dai L; Ding S Chemosphere; 2019 Feb; 217():851-857. PubMed ID: 30458420 [TBL] [Abstract][Full Text] [Related]
54. Improving the design and implementation of sediment fingerprinting studies: summary and outcomes of the TRACING 2021 Scientific School. Evrard O; Batista PVG; Company J; Dabrin A; Foucher A; Frankl A; García-Comendador J; Huguet A; Lake N; Lizaga I; Martínez-Carreras N; Navratil O; Pignol C; Sellier V J Soils Sediments; 2022; 22(6):1648-1661. PubMed ID: 35495078 [TBL] [Abstract][Full Text] [Related]
55. Environmental DNA provides information on sediment sources: A study in catchments affected by Fukushima radioactive fallout. Evrard O; Laceby JP; Ficetola GF; Gielly L; Huon S; Lefèvre I; Onda Y; Poulenard J Sci Total Environ; 2019 May; 665():873-881. PubMed ID: 30790760 [TBL] [Abstract][Full Text] [Related]
56. The impact of catchment source group classification on the accuracy of sediment fingerprinting outputs. Pulley S; Foster I; Collins AL J Environ Manage; 2017 Jun; 194():16-26. PubMed ID: 27160761 [TBL] [Abstract][Full Text] [Related]
57. First use of a compound-specific stable isotope (CSSI) technique to trace sediment transport in upland forest catchments of Chile. Bravo-Linares C; Schuller P; Castillo A; Ovando-Fuentealba L; Muñoz-Arcos E; Alarcón O; de Los Santos-Villalobos S; Cardoso R; Muniz M; Meigikos Dos Anjos R; Bustamante-Ortega R; Dercon G Sci Total Environ; 2018 Mar; 618():1114-1124. PubMed ID: 29055595 [TBL] [Abstract][Full Text] [Related]
58. A novel approach of combining isotopic and geochemical signatures to differentiate the sources of sediments and particulate nutrients from different land uses. Bahadori M; Chen C; Lewis S; Rezaei Rashti M; Cook F; Parnell A; Esfandbod M; Boyd S Sci Total Environ; 2019 Mar; 655():129-140. PubMed ID: 30469057 [TBL] [Abstract][Full Text] [Related]
59. Sediment source identification and load prediction in a mixed-use Piedmont watershed, South Carolina. McCarney-Castle K; Childress TM; Heaton CR J Environ Manage; 2017 Jan; 185():60-69. PubMed ID: 28029480 [TBL] [Abstract][Full Text] [Related]
60. Source dynamics of radiocesium-contaminated particulate matter deposited in an agricultural water reservoir after the Fukushima nuclear accident. Huon S; Hayashi S; Laceby JP; Tsuji H; Onda Y; Evrard O Sci Total Environ; 2018 Jan; 612():1079-1090. PubMed ID: 28892848 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]