These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 30710823)
1. Magnetically-guided hydrogel capsule motors produced via ultrasound assisted hydrodynamic electrospray ionization jetting. Rutkowski S; Si T; Gai M; Sun M; Frueh J; He Q J Colloid Interface Sci; 2019 Apr; 541():407-417. PubMed ID: 30710823 [TBL] [Abstract][Full Text] [Related]
2. Magnetically-propelled hydrogel particle motors produced by ultrasound assisted hydrodynamic electrospray ionization jetting. Rutkowski S; Mu L; Si T; Gai M; Sun M; Frueh J; He Q Colloids Surf B Biointerfaces; 2019 Mar; 175():44-55. PubMed ID: 30517904 [TBL] [Abstract][Full Text] [Related]
3. Encapsulation of a glycosaminoglycan in hydroxyapatite/alginate capsules. Tan CS; Jejurikar A; Rai B; Bostrom T; Lawrie G; Grøndahl L J Biomed Mater Res A; 2009 Dec; 91(3):866-77. PubMed ID: 19065572 [TBL] [Abstract][Full Text] [Related]
4. Design and assembly of biodegradable capsules based on alginate hydrogel composite for the encapsulation of blue dye. Kabalan Y; Montané X; Tylkowski B; De la Flor S; Giamberini M Int J Biol Macromol; 2023 Apr; 233():123530. PubMed ID: 36736972 [TBL] [Abstract][Full Text] [Related]
5. Hydrodynamic electrospray ionization jetting of calcium alginate particles: effect of spray-mode, spraying distance and concentration. Rutkowski S; Si T; Gai M; Frueh J; He Q RSC Adv; 2018 Jul; 8(43):24243-24249. PubMed ID: 35539165 [TBL] [Abstract][Full Text] [Related]
6. Effect of incorporating modified pinhão starch in alginate-based hydrogel beads for encapsulation of bioactive compounds by hydrodynamic electrospray ionization jetting. Dorneles MS; de Azevedo ES; Noreña CPZ Int J Biol Macromol; 2024 May; 267(Pt 2):131555. PubMed ID: 38615858 [TBL] [Abstract][Full Text] [Related]
7. Production, deformation and mechanical investigation of magnetic alginate capsules. Zwar E; Kemna A; Richter L; Degen P; Rehage H J Phys Condens Matter; 2018 Feb; 30(8):085101. PubMed ID: 29323659 [TBL] [Abstract][Full Text] [Related]
8. Controlling the morphology and material characteristics of electrospray generated calcium alginate microhydrogels. Mehregan Nikoo A; Kadkhodaee R; Ghorani B; Razzaq H; Tucker N J Microencapsul; 2016 Nov; 33(7):605-612. PubMed ID: 27559609 [TBL] [Abstract][Full Text] [Related]
9. Towards a fully synthetic substitute of alginate: optimization of a thermal gelation/chemical cross-linking scheme ("tandem" gelation) for the production of beads and liquid-core capsules. Cellesi F; Weber W; Fussenegger M; Hubbell JA; Tirelli N Biotechnol Bioeng; 2004 Dec; 88(6):740-9. PubMed ID: 15532084 [TBL] [Abstract][Full Text] [Related]
10. Biocompatible Double-Membrane Hydrogels from Cationic Cellulose Nanocrystals and Anionic Alginate as Complexing Drugs Codelivery. Lin N; Gèze A; Wouessidjewe D; Huang J; Dufresne A ACS Appl Mater Interfaces; 2016 Mar; 8(11):6880-9. PubMed ID: 26925765 [TBL] [Abstract][Full Text] [Related]
11. Sequential release of nanoparticle payloads from ultrasonically burstable capsules. Kennedy S; Hu J; Kearney C; Skaat H; Gu L; Gentili M; Vandenburgh H; Mooney D Biomaterials; 2016 Jan; 75():91-101. PubMed ID: 26496382 [TBL] [Abstract][Full Text] [Related]
12. Oil encapsulation techniques using alginate as encapsulating agent: applications and drawbacks. Martins E; Poncelet D; Rodrigues RC; Renard D J Microencapsul; 2017 Dec; 34(8):754-771. PubMed ID: 29161939 [TBL] [Abstract][Full Text] [Related]
14. Core-shell capsules based on supramolecular hydrogels show shell-related erosion and release due to confinement. Guo M; Cao X; Meijer EW; Dankers PY Macromol Biosci; 2013 Jan; 13(1):77-83. PubMed ID: 23208698 [TBL] [Abstract][Full Text] [Related]
15. Matryoshka-Inspired Micro-Origami Capsules to Enhance Loading, Encapsulation, and Transport of Drugs. Huang HW; Tibbitt MW; Huang TY; Nelson BJ Soft Robot; 2019 Feb; 6(1):150-159. PubMed ID: 30457929 [TBL] [Abstract][Full Text] [Related]
16. Maintaining dimensions and mechanical properties of ionically crosslinked alginate hydrogel scaffolds in vitro. Kuo CK; Ma PX J Biomed Mater Res A; 2008 Mar; 84(4):899-907. PubMed ID: 17647237 [TBL] [Abstract][Full Text] [Related]
18. Influence of alginate backbone on efficacy of thermo-responsive alginate-g-P(NIPAAm) hydrogel as a vehicle for sustained and controlled gene delivery. Chalanqui MJ; Pentlavalli S; McCrudden C; Chambers P; Ziminska M; Dunne N; McCarthy HO Mater Sci Eng C Mater Biol Appl; 2019 Feb; 95():409-421. PubMed ID: 30573265 [TBL] [Abstract][Full Text] [Related]
19. Geometric screening of core/shell hydrogel microcapsules using a tapered microchannel with interdigitated electrodes. Niu Y; Qi L; Zhang F; Zhao Y Biosens Bioelectron; 2018 Jul; 112():162-169. PubMed ID: 29704784 [TBL] [Abstract][Full Text] [Related]
20. Novel calcium-alginate capsules with aqueous core and thermo-responsive membrane. Wang JY; Jin Y; Xie R; Liu JY; Ju XJ; Meng T; Chu LY J Colloid Interface Sci; 2011 Jan; 353(1):61-8. PubMed ID: 20932528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]