These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30710974)

  • 1. Time-domain oversampled orthogonal signal-division multiplexing underwater acoustic communications.
    Han J; Wang Y; Zhang L; Leus G
    J Acoust Soc Am; 2019 Jan; 145(1):292. PubMed ID: 30710974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Space-frequency coded orthogonal signal-division multiplexing over underwater acoustic channels.
    Han J; Shi W; Leus G
    J Acoust Soc Am; 2017 Jun; 141(6):EL513. PubMed ID: 28618824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low Complexity Equalization of Orthogonal Chirp Division Multiplexing in Doubly-Selective Channels.
    Wang X; Jiang Z; Shen XH
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32492855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Filtered Multitone Modulation Underwater Acoustic Communications Using Low-Complexity Channel-Estimation-Based MMSE Turbo Equalization.
    Sun L; Wang M; Zhang G; Li H; Huang L
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31212900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Meta-learning-aided orthogonal frequency division multiplexing for underwater acoustic communications.
    Zhang Y; Wang H; Li C; Chen D; Meriaudeau F
    J Acoust Soc Am; 2021 Jun; 149(6):4596. PubMed ID: 34241419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single Carrier with Frequency Domain Equalization for Synthetic Aperture Underwater Acoustic Communications.
    He C; Xi R; Wang H; Jing L; Shi W; Zhang Q
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28684683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian Learning-Based Clustered-Sparse Channel Estimation for Time-Varying Underwater Acoustic OFDM Communication.
    Wang S; Liu M; Li D
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parameterizing both path amplitude and delay variations of underwater acoustic channels for block decoding of orthogonal frequency division multiplexing.
    Xu X; Wang Z; Zhou S; Wan L
    J Acoust Soc Am; 2012 Jun; 131(6):4672-9. PubMed ID: 22712940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Data augmentation aided complex-valued network for channel estimation in underwater acoustic orthogonal frequency division multiplexing system.
    Zhang Y; Wang H; Li C; Meriaudeau F
    J Acoust Soc Am; 2022 Jun; 151(6):4150. PubMed ID: 35778218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joint Time-Reversal Space-Time Block Coding and Adaptive Equalization for Filtered Multitone Underwater Acoustic Communications.
    Sun L; Yan M; Li H; Xu Y
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bandwidth-efficient frequency-domain equalization for single carrier multiple-input multiple-output underwater acoustic communications.
    Zhang J; Zheng YR
    J Acoust Soc Am; 2010 Nov; 128(5):2910-9. PubMed ID: 21110586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generalized Frequency Division Multiplexing-Based Low-Power Underwater Acoustic Image Transceiver.
    Lin CF; Wu CF; Hsieh CL; Chang SH; Parinov IA; Shevtsov S
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Underwater Time Reversal Communication Method Using Symbol-Based Doppler Compensation with a Single Sound Pressure Sensor.
    Zhao A; Zeng C; Hui J; Ma L; Bi X
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30274286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple and effective noise whitening method for underwater acoustic orthogonal frequency division multiplexing.
    Berger CR; Chen W; Zhou S; Huang J
    J Acoust Soc Am; 2010 Apr; 127(4):2358-67. PubMed ID: 20370018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decision fractional fast Fourier transform Doppler compensation in underwater acoustic orthogonal frequency division multiplexing.
    Ma X; Zheng C
    J Acoust Soc Am; 2016 Nov; 140(5):EL429. PubMed ID: 27908032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orthogonal Chirp Division Multiplexing for Underwater Acoustic Communication.
    Bai Y; Bouvet PJ
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30405067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covert underwater acoustic communications.
    Ling J; He H; Li J; Roberts W; Stoica P
    J Acoust Soc Am; 2010 Nov; 128(5):2898-909. PubMed ID: 21110585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiuser Chirp Spread Spectrum Transmission in an Underwater Acoustic Channel Applied to an AUV Fleet.
    Bernard C; Bouvet PJ; Pottier A; Forjonel P
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32164263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orthogonal Frequency Division Multiplexing Techniques Comparison for Underwater Optical Wireless Communication Systems.
    Lian J; Gao Y; Wu P; Lian D
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30621190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An enhanced iterative receiver based on vector approximate message passing for deep-sea vertical underwater acoustic communications.
    Li D; Wu Y; Zhu M; Tao J
    J Acoust Soc Am; 2021 Mar; 149(3):1549. PubMed ID: 33765778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.