These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 30711111)
1. Rapid screening of ochratoxin A in wheat by infrared spectroscopy. De Girolamo A; von Holst C; Cortese M; Cervellieri S; Pascale M; Longobardi F; Catucci L; Porricelli ACR; Lippolis V Food Chem; 2019 Jun; 282():95-100. PubMed ID: 30711111 [TBL] [Abstract][Full Text] [Related]
2. Rapid analysis of deoxynivalenol in durum wheat by FT-NIR spectroscopy. De Girolamo A; Cervellieri S; Visconti A; Pascale M Toxins (Basel); 2014 Nov; 6(11):3129-43. PubMed ID: 25384107 [TBL] [Abstract][Full Text] [Related]
3. Fourier transform near-infrared and mid-infrared spectroscopy as efficient tools for rapid screening of deoxynivalenol contamination in wheat bran. De Girolamo A; Cervellieri S; Cortese M; Porricelli ACR; Pascale M; Longobardi F; von Holst C; Ciaccheri L; Lippolis V J Sci Food Agric; 2019 Mar; 99(4):1946-1953. PubMed ID: 30270446 [TBL] [Abstract][Full Text] [Related]
4. Rapid and non-invasive analysis of deoxynivalenol in durum and common wheat by Fourier-Transform Near Infrared (FT-NIR) spectroscopy. De Girolamo A; Lippolis V; Nordkvist E; Visconti A Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 Jun; 26(6):907-17. PubMed ID: 19680966 [TBL] [Abstract][Full Text] [Related]
5. Near-infrared spectroscopy as a tool for rapid screening of deoxynivalenol in wheat flour and its applicability in the industry. Tyska D; Mallmann A; Gressler LT; Mallmann CA Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2021 Nov; 38(11):1958-1968. PubMed ID: 34334116 [TBL] [Abstract][Full Text] [Related]
6. Tracing the Geographical Origin of Durum Wheat by FT-NIR Spectroscopy. De Girolamo A; Cortese M; Cervellieri S; Lippolis V; Pascale M; Logrieco AF; Suman M Foods; 2019 Oct; 8(10):. PubMed ID: 31581610 [TBL] [Abstract][Full Text] [Related]
7. Rapid Authentication of 100% Italian Durum Wheat Pasta by FT-NIR Spectroscopy Combined with Chemometric Tools. De Girolamo A; Cervellieri S; Mancini E; Pascale M; Logrieco AF; Lippolis V Foods; 2020 Oct; 9(11):. PubMed ID: 33120902 [TBL] [Abstract][Full Text] [Related]
8. Application of near infrared spectroscopy technology for the detection of fungicide treatment on durum wheat samples. Soto-Cámara M; Gaitán-Jurado AJ; Domínguez J Talanta; 2012 Aug; 97():298-302. PubMed ID: 22841083 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of near-infrared (NIR) and Fourier transform mid-infrared (ATR-FT/MIR) spectroscopy techniques combined with chemometrics for the determination of crude protein and intestinal protein digestibility of wheat. Shi H; Lei Y; Louzada Prates L; Yu P Food Chem; 2019 Jan; 272():507-513. PubMed ID: 30309575 [TBL] [Abstract][Full Text] [Related]
10. Qualitative and quantitative analysis of ochratoxin A contamination in green coffee beans using Fourier transform near infrared spectroscopy. Taradolsirithitikul P; Sirisomboon P; Dachoupakan Sirisomboon C J Sci Food Agric; 2017 Mar; 97(4):1260-1266. PubMed ID: 27324609 [TBL] [Abstract][Full Text] [Related]
11. Multi-block classification of Italian semolina based on Near Infrared Spectroscopy (NIR) analysis and alveographic indices. Firmani P; Nardecchia A; Nocente F; Gazza L; Marini F; Biancolillo A Food Chem; 2020 Mar; 309():125677. PubMed ID: 31685372 [TBL] [Abstract][Full Text] [Related]
12. Near infrared reflectance spectroscopy for determination of the geographical origin of wheat. Zhao H; Guo B; Wei Y; Zhang B Food Chem; 2013 Jun; 138(2-3):1902-7. PubMed ID: 23411323 [TBL] [Abstract][Full Text] [Related]
13. Near-infrared hyperspectral imaging for deoxynivalenol and ergosterol estimation in wheat samples. Femenias A; Gatius F; Ramos AJ; Sanchis V; Marín S Food Chem; 2021 Mar; 341(Pt 2):128206. PubMed ID: 33035826 [TBL] [Abstract][Full Text] [Related]
14. A rapid qualitative and quantitative evaluation of grape berries at various stages of development using Fourier-transform infrared spectroscopy and multivariate data analysis. Musingarabwi DM; Nieuwoudt HH; Young PR; Eyéghè-Bickong HA; Vivier MA Food Chem; 2016 Jan; 190():253-262. PubMed ID: 26212968 [TBL] [Abstract][Full Text] [Related]
15. Detection of sunn pest-damaged wheat samples using visible/near-infrared spectroscopy based on pattern recognition. Basati Z; Jamshidi B; Rasekh M; Abbaspour-Gilandeh Y Spectrochim Acta A Mol Biomol Spectrosc; 2018 Oct; 203():308-314. PubMed ID: 29879646 [TBL] [Abstract][Full Text] [Related]
16. A simple design for the validation of a FT-NIR screening method: Application to the detection of durum wheat pasta adulteration. De Girolamo A; Arroyo MC; Lippolis V; Cervellieri S; Cortese M; Pascale M; Logrieco AF; von Holst C Food Chem; 2020 Dec; 333():127449. PubMed ID: 32659663 [TBL] [Abstract][Full Text] [Related]
17. FTIR-ATR infrared spectroscopy for the detection of ochratoxin A in dried vine fruit. Galvis-Sánchez AC; Barros A; Delgadillo I Food Addit Contam; 2007 Nov; 24(11):1299-305. PubMed ID: 17852382 [TBL] [Abstract][Full Text] [Related]
18. Classification of structurally related commercial contrast media by near infrared spectroscopy. Yip WL; Soosainather TC; Dyrstad K; Sande SA J Pharm Biomed Anal; 2014 Mar; 90():148-60. PubMed ID: 24374816 [TBL] [Abstract][Full Text] [Related]
19. Authenticity identification and classification of Rhodiola species in traditional Tibetan medicine based on Fourier transform near-infrared spectroscopy and chemometrics analysis. Li T; Su C Spectrochim Acta A Mol Biomol Spectrosc; 2018 Nov; 204():131-140. PubMed ID: 29925045 [TBL] [Abstract][Full Text] [Related]
20. Comparison of near-infrared (NIR) and mid-infrared (MIR) spectroscopy based on chemometrics for saffron authentication and adulteration detection. Amirvaresi A; Nikounezhad N; Amirahmadi M; Daraei B; Parastar H Food Chem; 2021 May; 344():128647. PubMed ID: 33229154 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]