These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 30711638)

  • 1. Dendrimer directed assembly of dicarboxylated hairy nanocellulose.
    Tavakolian M; Lerner J; Medina Tovar F; Frances J; van de Ven TGM; Kakkar A
    J Colloid Interface Sci; 2019 Apr; 541():444-453. PubMed ID: 30711638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Bottom-up Route to a Chemically End-to-End Assembly of Nanocellulose Fibers.
    Yang H; van de Ven TG
    Biomacromolecules; 2016 Jun; 17(6):2240-7. PubMed ID: 27211496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroacoustic characterization of trimmed hairy nanocelluloses.
    Koshani R; van de Ven TGM
    J Colloid Interface Sci; 2020 Mar; 563():252-260. PubMed ID: 31881491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dye Removal Using Hairy Nanocellulose: Experimental and Theoretical Investigations.
    Tavakolian M; Wiebe H; Sadeghi MA; van de Ven TGM
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):5040-5049. PubMed ID: 31820905
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electroacoustic characterization of conventional and electrosterically stabilized nanocrystalline celluloses.
    Safari S; Sheikhi A; van de Ven TG
    J Colloid Interface Sci; 2014 Oct; 432():151-7. PubMed ID: 25086389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper removal using electrosterically stabilized nanocrystalline cellulose.
    Sheikhi A; Safari S; Yang H; van de Ven TG
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11301-8. PubMed ID: 25950624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Stable, Functional Hairy Nanoparticles and Biopolymers from Wood Fibers: Towards Sustainable Nanotechnology.
    Sheikhi A; Yang H; Alam MN; van de Ven TG
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27500560
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Water Vapor Adsorption on Electrical Properties of Carbon Nanotube/Nanocrystalline Cellulose Composites.
    Safari S; van de Ven TG
    ACS Appl Mater Interfaces; 2016 Apr; 8(14):9483-9. PubMed ID: 26998641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of hairy aminated nanocrystalline cellulose.
    Koshani R; Eiyegbenin JE; Wang Y; van de Ven TGM
    J Colloid Interface Sci; 2022 Feb; 607(Pt 1):134-144. PubMed ID: 34500414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DNA assisted self-assembly of PAMAM dendrimers.
    Mandal T; Kumar MV; Maiti PK
    J Phys Chem B; 2014 Oct; 118(40):11805-15. PubMed ID: 25205346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic liquid-based preparation of cellulose-dendrimer films as solid supports for enzyme immobilization.
    Bagheri M; Rodríguez H; Swatloski RP; Spear SK; Daly DT; Rogers RD
    Biomacromolecules; 2008 Jan; 9(1):381-7. PubMed ID: 18163541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Films prepared from electrosterically stabilized nanocrystalline cellulose.
    Yang H; Tejado A; Alam N; Antal M; van de Ven TG
    Langmuir; 2012 May; 28(20):7834-42. PubMed ID: 22482733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric modification of cellulose nanocrystals with PAMAM dendrimers for the preparation of pH-responsive hairy surfaces.
    Chemin M; Moreau C; Cathala B; Villares A
    Carbohydr Polym; 2020 Dec; 249():116779. PubMed ID: 32933703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overcoming Interfacial Scaling Using Engineered Nanocelluloses: A QCM-D Study.
    Sheikhi A; Olsson ALJ; Tufenkji N; Kakkar A; van de Ven TGM
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34553-34560. PubMed ID: 30203958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fractal growth of PAMAM dendrimer aggregates and its impact on the intrinsic emission properties.
    Jasmine MJ; Prasad E
    J Phys Chem B; 2010 Jun; 114(23):7735-42. PubMed ID: 20496918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyamidoamine dendrimers as novel potential absorption enhancers for improving the small intestinal absorption of poorly absorbable drugs in rats.
    Lin Y; Fujimori T; Kawaguchi N; Tsujimoto Y; Nishimi M; Dong Z; Katsumi H; Sakane T; Yamamoto A
    J Control Release; 2011 Jan; 149(1):21-8. PubMed ID: 20184931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA-templated covalent coupling of G4 PAMAM dendrimers.
    Liu H; Tørring T; Dong M; Rosen CB; Besenbacher F; Gothelf KV
    J Am Chem Soc; 2010 Dec; 132(51):18054-6. PubMed ID: 21133363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific binding structures of dendrimers on lipid bilayer membranes.
    Wang YL; Lu ZY; Laaksonen A
    Phys Chem Chem Phys; 2012 Jun; 14(23):8348-59. PubMed ID: 22585181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of anionic and cationic polyamidoamine (PAMAM) dendrimers on a model lipid membrane.
    Lombardo D; Calandra P; Bellocco E; Laganà G; Barreca D; Magazù S; Wanderlingh U; Kiselev MA
    Biochim Biophys Acta; 2016 Nov; 1858(11):2769-2777. PubMed ID: 27521487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dendronization of cellulose nanowhisker with cationic hyperbranched dendritic polyamidoamine.
    Tehrani AD; Basiryan A
    Carbohydr Polym; 2015 Apr; 120():46-52. PubMed ID: 25662686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.