These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 30711797)

  • 1. Formation and evolution of aqueous organic aerosols via concurrent condensation and chemical aging.
    Djikaev YS; Ruckenstein E
    Adv Colloid Interface Sci; 2019 Mar; 265():45-67. PubMed ID: 30711797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Heterogeneous Chemical Reactions on the Köhler Activation of Aqueous Organic Aerosols.
    Djikaev YS; Ruckenstein E
    J Phys Chem A; 2018 May; 122(17):4322-4337. PubMed ID: 29668281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamics of water condensation on a primary marine aerosol coated by surfactant organic molecules.
    Djikaev YS; Ruckenstein E
    J Phys Chem A; 2014 Oct; 118(42):9879-89. PubMed ID: 25209578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does the Enthalpy of Heterogeneous Chemical Reactions Affect the Formation of Aqueous Secondary Organic Aerosols?
    Djikaev YS; Ruckenstein E
    J Phys Chem Lett; 2018 Sep; 9(18):5311-5316. PubMed ID: 30183305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depletion of atmospheric organic trace gases due to their uptake by an ensemble of aqueous aerosols evolving via concurrent condensation and chemical aging.
    Djikaev YS; Ruckenstein E
    Phys Chem Chem Phys; 2019 Jun; 21(24):13090-13098. PubMed ID: 31168553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mulitphase Atmospheric Chemistry in Liquid Water: Impacts and Controllability of Organic Aerosol.
    Carlton AG; Christiansen AE; Flesch MM; Hennigan CJ; Sareen N
    Acc Chem Res; 2020 Sep; 53(9):1715-1723. PubMed ID: 32803954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of chemical aging of aqueous organic aerosols on the rate of their steady-state nucleation.
    Djikaev YS; Ruckenstein E
    Phys Chem Chem Phys; 2020 Aug; 22(31):17612-17619. PubMed ID: 32720662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling Novel Aqueous Particle and Cloud Chemistry Processes of Biomass Burning Phenols and Their Potential to Form Secondary Organic Aerosols.
    Zhang J; Shrivastava M; Ma L; Jiang W; Anastasio C; Zhang Q; Zelenyuk A
    Environ Sci Technol; 2024 Feb; 58(8):3776-3786. PubMed ID: 38346331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic equation of concurrent nucleation and chemical aging of an ensemble of aqueous organic aerosols.
    Djikaev YS; Ruckenstein E
    Phys Rev E; 2020 Jun; 101(6-1):062801. PubMed ID: 32688542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New approach to the kinetics of heterogeneous unary nucleation on liquid aerosols of a binary solution.
    Djikaev Y; Ruckenstein E
    J Chem Phys; 2006 Dec; 125(24):244707. PubMed ID: 17199368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfactants and cloud droplet activation: A systematic extension of Köhler theory based on analysis of droplet stability.
    McGraw R; Wang J
    J Chem Phys; 2021 Jan; 154(2):024707. PubMed ID: 33445916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamic simulation of dicarboxylic acid coated aqueous aerosol: structure and processing of water vapor.
    Ma X; Chakraborty P; Henz BJ; Zachariah MR
    Phys Chem Chem Phys; 2011 May; 13(20):9374-84. PubMed ID: 21479309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of surface tension time-evolution for CCN activation of a complex organic surfactant.
    Lin JJ; Kristensen TB; Calderón SM; Malila J; Prisle NL
    Environ Sci Process Impacts; 2020 Feb; 22(2):271-284. PubMed ID: 31912080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Secondary Organic Aerosols from Aqueous Reaction of Aerosol Water].
    Ye ZL; Qu ZX; Ma SS; Gai XL
    Huan Jing Ke Xue; 2018 Aug; 39(8):3954-3964. PubMed ID: 29998706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloud droplet activation of organic-salt mixtures predicted from two model treatments of the droplet surface.
    Lin JJ; Malila J; Prisle NL
    Environ Sci Process Impacts; 2018 Nov; 20(11):1611-1629. PubMed ID: 30398264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Multiphase Chemical Processes Influencing Atmospheric Aerosols, Air Quality, and Climate in the Anthropocene.
    Su H; Cheng Y; Pöschl U
    Acc Chem Res; 2020 Oct; 53(10):2034-2043. PubMed ID: 32927946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined effect of glycine and sea salt on aerosol cloud droplet activation predicted by molecular dynamics simulations.
    Sun L; Hede T; Tu Y; Leck C; Agren H
    J Phys Chem A; 2013 Oct; 117(41):10746-52. PubMed ID: 24063576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surfaces of Atmospheric Droplet Models Probed with Synchrotron XPS on a Liquid Microjet.
    Prisle NL
    Acc Chem Res; 2024 Jan; 57(2):177-187. PubMed ID: 38156821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling Photosensitized Secondary Organic Aerosol Formation in Laboratory and Ambient Aerosols.
    Tsui WG; Rao Y; Dai HL; McNeill VF
    Environ Sci Technol; 2017 Jul; 51(13):7496-7501. PubMed ID: 28605184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Halogen production from aqueous tropospheric particles.
    Herrmann H; Majdik Z; Ervens B; Weise D
    Chemosphere; 2003 Jul; 52(2):485-502. PubMed ID: 12738274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.