These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 30711855)
1. Detoxification mechanism of organophosphorus pesticide via carboxylestrase pathway that triggers de novo TAG biosynthesis in oleaginous microalgae. Nanda M; Kumar V; Fatima N; Pruthi V; Verma M; Chauhan PK; Vlaskin MS; Grigorenko AV Aquat Toxicol; 2019 Apr; 209():49-55. PubMed ID: 30711855 [TBL] [Abstract][Full Text] [Related]
2. Interaction between 1,2-benzisothiazol-3(2H)-one and microalgae: Growth inhibition and detoxification mechanism. Wang XX; Zhang TY; Dao GH; Hu HY Aquat Toxicol; 2018 Dec; 205():66-75. PubMed ID: 30340028 [TBL] [Abstract][Full Text] [Related]
3. Mild pressure induces rapid accumulation of neutral lipid (triacylglycerol) in Chlorella spp. Praveenkumar R; Kim B; Lee J; Vijayan D; Lee K; Nam B; Jeon SG; Kim DM; Oh YK Bioresour Technol; 2016 Nov; 220():661-665. PubMed ID: 27634024 [TBL] [Abstract][Full Text] [Related]
4. The comparison of transcriptomic response of green microalga Chlorella sorokiniana exposure to environmentally relevant concentration of cadmium(II) and 4-n-nonylphenol. Ding N; Wang L; Kang Y; Luo K; Zeng D; Man YB; Zhang Q; Zeng L; Luo J; Jiang F Environ Geochem Health; 2020 Sep; 42(9):2881-2894. PubMed ID: 32026273 [TBL] [Abstract][Full Text] [Related]
5. Enantioselective mechanism of toxic effects of triticonazole against Chlorella pyrenoidosa. Liu R; Deng Y; Zhang W; Zhang L; Wang Z; Li B; Diao J; Zhou Z Ecotoxicol Environ Saf; 2019 Dec; 185():109691. PubMed ID: 31563746 [TBL] [Abstract][Full Text] [Related]
6. Impact of pyrene (polycyclic aromatic hydrocarbons) pollutant on metabolites and lipid induction in microalgae Chlorella sorokiniana (UUIND6) to produce renewable biodiesel. Jaiswal KK; Kumar V; Vlaskin MS; Nanda M Chemosphere; 2021 Dec; 285():131482. PubMed ID: 34273690 [TBL] [Abstract][Full Text] [Related]
7. Growth Parameters, Photosynthetic Performance, and Biochemical Characterization of Newly Isolated Green Microalgae in Response to Culture Condition Variations. Jazzar S; Berrejeb N; Messaoud C; Marzouki MN; Smaali I Appl Biochem Biotechnol; 2016 Aug; 179(7):1290-308. PubMed ID: 27052210 [TBL] [Abstract][Full Text] [Related]
8. Harnessing the potential of microalgae-based systems for mitigating pesticide pollution and its impact on their metabolism. Fayaz T; Rana SS; Goyal E; Ratha SK; Renuka N J Environ Manage; 2024 Apr; 357():120723. PubMed ID: 38565028 [TBL] [Abstract][Full Text] [Related]
9. Effect of cadmium in the microalga Chlorella sorokiniana: A proteomic study. León-Vaz A; Romero LC; Gotor C; León R; Vigara J Ecotoxicol Environ Saf; 2021 Jan; 207():111301. PubMed ID: 32949933 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of the mechanisms underlying altered fatty acid biosynthesis in heterotrophic microalgal strain Chlorella sorokiniana during biodegradation of phenol and p-nitrophenol. Jaiswal KK; Kumar V; Arora N; Vlaskin MS Environ Sci Pollut Res Int; 2023 Aug; 30(37):87866-87879. PubMed ID: 37432577 [TBL] [Abstract][Full Text] [Related]
11. Sensitivity of two green microalgae to copper stress: Growth, oxidative and antioxidants analyses. Hamed SM; Selim S; Klöck G; AbdElgawad H Ecotoxicol Environ Saf; 2017 Oct; 144():19-25. PubMed ID: 28599127 [TBL] [Abstract][Full Text] [Related]
12. Removal of atrazine in catalytic degradation solutions by microalgae Chlorella sp. and evaluation of toxicity of degradation products via algal growth and photosynthetic activity. Hu N; Xu Y; Sun C; Zhu L; Sun S; Zhao Y; Hu C Ecotoxicol Environ Saf; 2021 Jan; 207():111546. PubMed ID: 33254405 [TBL] [Abstract][Full Text] [Related]
13. Exploring the influence of sulfadiazine-induced stress on antibiotic removal and transformation pathway using microalgae Chlorella sp. Ma Y; Lin S; Guo T; Guo C; Li Y; Hou Y; Gao Y; Dong R; Liu S Environ Res; 2024 Sep; 256():119225. PubMed ID: 38797461 [TBL] [Abstract][Full Text] [Related]
14. Screening, growth medium optimisation and heterotrophic cultivation of microalgae for biodiesel production. Jia Z; Liu Y; Daroch M; Geng S; Cheng JJ Appl Biochem Biotechnol; 2014 Aug; 173(7):1667-79. PubMed ID: 24845038 [TBL] [Abstract][Full Text] [Related]
15. Fast pesticide pre-screening in marine environment using a green microalgae-based optical bioassay. Moro L; Pezzotti G; Turemis M; Sanchís J; Farré M; Denaro R; Giacobbe MG; Crisafi F; Giardi MT Mar Pollut Bull; 2018 Apr; 129(1):212-221. PubMed ID: 29680540 [TBL] [Abstract][Full Text] [Related]
17. Toxicity of diesel water accommodated fraction toward microalgae, Pseudokirchneriella subcapitata and Chlorella sp. MM3. Ramadass K; Megharaj M; Venkateswarlu K; Naidu R Ecotoxicol Environ Saf; 2017 Aug; 142():538-543. PubMed ID: 28478380 [TBL] [Abstract][Full Text] [Related]
18. The combined toxicity influence of microplastics and nonylphenol on microalgae Chlorella pyrenoidosa. Yang W; Gao X; Wu Y; Wan L; Tan L; Yuan S; Ding H; Zhang W Ecotoxicol Environ Saf; 2020 Jun; 195():110484. PubMed ID: 32200150 [TBL] [Abstract][Full Text] [Related]
19. The utilization of post-chlorinated municipal domestic wastewater for biomass and lipid production by Chlorella spp. under batch conditions. Mutanda T; Karthikeyan S; Bux F Appl Biochem Biotechnol; 2011 Aug; 164(7):1126-38. PubMed ID: 21347654 [TBL] [Abstract][Full Text] [Related]
20. Production of biomass and lipid by the microalgae Chlorella protothecoides with heterotrophic-Cu(II) stressed (HCuS) coupling cultivation. Li Y; Mu J; Chen D; Han F; Xu H; Kong F; Xie F; Feng B Bioresour Technol; 2013 Nov; 148():283-92. PubMed ID: 24055971 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]