These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 3071207)

  • 21. Intrinsic neuronal time delays can be compensated in cat visual cortex and frog tectum with regard to motion analysis.
    Koch HJ
    Rom J Physiol; 1998; 35(3-4):275-84. PubMed ID: 11061327
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cortical responses to visual motion in alert and anesthetized monkeys.
    Movshon JA; Albright TD; Stoner GR; Majaj NJ; Smith MA
    Nat Neurosci; 2003 Jan; 6(1):3; author reply 3-4. PubMed ID: 12494238
    [No Abstract]   [Full Text] [Related]  

  • 23. Visual receptive field properties of excitatory neurons in the substantia nigra.
    Nagy A; Eördegh G; Norita M; Benedek G
    Neuroscience; 2005; 130(2):513-8. PubMed ID: 15664707
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The spatial substructure of visual receptive fields in the cat's superior colliculus.
    Dec K; Waleszczyk WJ; Wróbel A; Harutiunian-Kozak BA
    Arch Ital Biol; 2001 Sep; 139(4):337-56. PubMed ID: 11603077
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of stroboscopic rearing on the binocularity and directionality of cat superior colliculus neurons.
    Flandrin JM; Kennedy H; Amblard B
    Brain Res; 1976 Jan; 101(3):576-81. PubMed ID: 1244991
    [No Abstract]   [Full Text] [Related]  

  • 26. Visual responses of pulvinar and collicular neurons during eye movements of awake, trained macaques.
    Robinson DL; McClurkin JW; Kertzman C; Petersen SE
    J Neurophysiol; 1991 Aug; 66(2):485-96. PubMed ID: 1774583
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microstimulation of extrastriate area MST influences performance on a direction discrimination task.
    Celebrini S; Newsome WT
    J Neurophysiol; 1995 Feb; 73(2):437-48. PubMed ID: 7760110
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A correlation between receptive field properties and morphological structures in the pretectum of the cat.
    Ballas I; Hoffmann KP
    J Comp Neurol; 1985 Aug; 238(4):417-28. PubMed ID: 4044923
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activity of superior colliculus in behaving monkey. I. Visual receptive fields of single neurons.
    Goldberg ME; Wurtz RH
    J Neurophysiol; 1972 Jul; 35(4):542-59. PubMed ID: 4624739
    [No Abstract]   [Full Text] [Related]  

  • 30. Prefrontal Neurons Represent Motion Signals from Across the Visual Field But for Memory-Guided Comparisons Depend on Neurons Providing These Signals.
    Wimmer K; Spinelli P; Pasternak T
    J Neurosci; 2016 Sep; 36(36):9351-64. PubMed ID: 27605611
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative analysis of visual receptive fields of neurons in nucleus of the optic tract and dorsal terminal nucleus of the accessory optic tract in macaque monkey.
    Hoffmann KP; Distler C
    J Neurophysiol; 1989 Aug; 62(2):416-28. PubMed ID: 2769338
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tracking an invisible target reveals spatial tuning of neurons in the rostral superior colliculus is not dependent on visual stimuli.
    Van Horn MR
    J Neurosci; 2009 Jan; 29(3):589-90. PubMed ID: 19158285
    [No Abstract]   [Full Text] [Related]  

  • 33. Detection of image displacement by phasic cells in peripheral visual fields of the monkey.
    Scobey RP; Horowitz JM
    Vision Res; 1976 Jan; 16(1):15-24. PubMed ID: 816082
    [No Abstract]   [Full Text] [Related]  

  • 34. Spatiotemporal response properties of direction-selective neurons in the nucleus of the optic tract and dorsal terminal nucleus of the wallaby, Macropus eugenii.
    Ibbotson MR; Mark RF; Maddess TL
    J Neurophysiol; 1994 Dec; 72(6):2927-43. PubMed ID: 7897500
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pretectal neurons optimized for the detection of saccade-like movements of the visual image.
    Price NS; Ibbotson MR
    J Neurophysiol; 2001 Apr; 85(4):1512-21. PubMed ID: 11287475
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements.
    Walker MF; Fitzgibbon EJ; Goldberg ME
    J Neurophysiol; 1995 May; 73(5):1988-2003. PubMed ID: 7623096
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neuronal responses to optic flow in the monkey parietal area PEc.
    Raffi M; Squatrito S; Maioli MG
    Cereb Cortex; 2002 Jun; 12(6):639-46. PubMed ID: 12003863
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatiotemporal elements of macaque v1 receptive fields.
    Rust NC; Schwartz O; Movshon JA; Simoncelli EP
    Neuron; 2005 Jun; 46(6):945-56. PubMed ID: 15953422
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predictive responses of periarcuate pursuit neurons to visual target motion.
    Fukushima K; Yamanobe T; Shinmei Y; Fukushima J
    Exp Brain Res; 2002 Jul; 145(1):104-20. PubMed ID: 12070750
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of search efficiency on surround suppression during visual selection in frontal eye field.
    Schall JD; Sato TR; Thompson KG; Vaughn AA; Juan CH
    J Neurophysiol; 2004 Jun; 91(6):2765-9. PubMed ID: 14749315
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.