These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 30712077)
1. A DNA functionalized porphyrinic metal-organic framework as a peroxidase mimicking catalyst for amperometric determination of the activity of T4 polynucleotide kinase. Song W; Yin W; Zhang Z; He P; Yang X; Zhang X Mikrochim Acta; 2019 Feb; 186(3):149. PubMed ID: 30712077 [TBL] [Abstract][Full Text] [Related]
2. A nanoplatform based on metal-organic frameworks and coupled exonuclease reaction for the fluorimetric determination of T4 polynucleotide kinase activity and inhibition. Chai Y; Cheng X; Xu G; Wei F; Bao J; Mei J; Ren D; Hu Q; Cen Y Mikrochim Acta; 2020 Mar; 187(4):243. PubMed ID: 32206934 [TBL] [Abstract][Full Text] [Related]
3. Label-free and sensitive detection of T4 polynucleotide kinase activity via coupling DNA strand displacement reaction with enzymatic-aided amplification. Cheng R; Tao M; Shi Z; Zhang X; Jin Y; Li B Biosens Bioelectron; 2015 Nov; 73():138-145. PubMed ID: 26057733 [TBL] [Abstract][Full Text] [Related]
4. An electrochemical biosensor based on the enhanced quasi-reversible redox signal of prussian blue generated by self-sacrificial label of iron metal-organic framework. Cui L; Hu J; Li CC; Wang CM; Zhang CY Biosens Bioelectron; 2018 Dec; 122():168-174. PubMed ID: 30265966 [TBL] [Abstract][Full Text] [Related]
5. Sensitive detection of T4 polynucleotide kinase activity based on multifunctional magnetic probes and polymerization nicking reactions mediated hyperbranched rolling circle amplification. Li X; Xu X; Song J; Xue Q; Li C; Jiang W Biosens Bioelectron; 2017 May; 91():631-636. PubMed ID: 28107744 [TBL] [Abstract][Full Text] [Related]
6. Exonuclease III-assisted signal amplification strategy for sensitive fluorescence detection of polynucleotide kinase based on poly(thymine)-templated copper nanoparticles. Zhao H; Yan Y; Chen M; Hu T; Wu K; Liu H; Ma C Analyst; 2019 Nov; 144(22):6689-6697. PubMed ID: 31598619 [TBL] [Abstract][Full Text] [Related]
7. Magnetic bead-gold nanoparticle hybrids probe based on optically countable gold nanoparticles with dark-field microscope for T4 polynucleotide kinase activity assay. Jin T; Zhang J; Zhao Y; Huang X; Tan C; Sun S; Tan Y Biosens Bioelectron; 2020 Feb; 150():111936. PubMed ID: 31818761 [TBL] [Abstract][Full Text] [Related]
8. Highly sensitive fluorescence assay of T4 polynucleotide kinase activity and inhibition via enzyme-assisted signal amplification. Tao M; Zhang J; Jin Y; Li B Anal Biochem; 2014 Nov; 464():63-9. PubMed ID: 25058928 [TBL] [Abstract][Full Text] [Related]
9. A label-free cyclic assembly of G-quadruplex nanowires for cascade amplification detection of T4 polynucleotide kinase activity and inhibition. Shi Z; Zhang X; Cheng R; Li B; Jin Y Analyst; 2015 Sep; 140(17):6124-30. PubMed ID: 26215375 [TBL] [Abstract][Full Text] [Related]
10. Single-Molecule Detection of Polynucleotide Kinase Based on Phosphorylation-Directed Recovery of Fluorescence Quenched by Au Nanoparticles. Wang LJ; Zhang Q; Tang B; Zhang CY Anal Chem; 2017 Jul; 89(13):7255-7261. PubMed ID: 28585816 [TBL] [Abstract][Full Text] [Related]
11. Mimic Peroxidase- and Bi Cui L; Hu J; Wang M; Diao XK; Li CC; Zhang CY Anal Chem; 2018 Oct; 90(19):11478-11485. PubMed ID: 30156106 [TBL] [Abstract][Full Text] [Related]
12. Amplified detection of T4 polynucleotide kinase activity by the coupled λ exonuclease cleavage reaction and catalytic assembly of bimolecular beacons. Hou T; Wang X; Liu X; Lu T; Liu S; Li F Anal Chem; 2014 Jan; 86(1):884-90. PubMed ID: 24328238 [TBL] [Abstract][Full Text] [Related]
13. A fluorometric method for determination of the activity of T4 polynucleotide kinase by using a DNA-templated silver nanocluster probe. Li J; Ma J; Zhang Y; Zhang Z; He G Mikrochim Acta; 2019 Jan; 186(1):48. PubMed ID: 30610460 [TBL] [Abstract][Full Text] [Related]
14. Ferrocene-functionalized SWCNT for electrochemical detection of T4 polynucleotide kinase activity. Wang Y; He X; Wang K; Ni X; Su J; Chen Z Biosens Bioelectron; 2012 Feb; 32(1):213-8. PubMed ID: 22209074 [TBL] [Abstract][Full Text] [Related]
15. Sensitive fluorescence sensing of T4 polynucleotide kinase activity and inhibition based on DNA/polydopamine nanospheres platform. Cen Y; Deng WJ; Yu RQ; Chu X Talanta; 2018 Apr; 180():271-276. PubMed ID: 29332810 [TBL] [Abstract][Full Text] [Related]
16. Highly sensitive detection of T4 polynucleotide kinase activity by coupling split DNAzyme and ligation-triggered DNAzyme cascade amplification. Liu S; Ming J; Lin Y; Wang C; Cheng C; Liu T; Wang L Biosens Bioelectron; 2014 May; 55():225-30. PubMed ID: 24384264 [TBL] [Abstract][Full Text] [Related]
17. Quencher-free hairpin probes for real-time detection of T4 polynucleotide kinase activity. Ma C; Liu H; Du J; Chen H; He H; Jin S; Wang K; Wang J Anal Biochem; 2016 Feb; 494():1-3. PubMed ID: 26518115 [TBL] [Abstract][Full Text] [Related]
18. Detection of T4 polynucleotide kinase activity based on cationic conjugated polymer-mediated fluorescence resonance energy transfer. Lian S; Liu C; Zhang X; Wang H; Li Z Biosens Bioelectron; 2015 Apr; 66():316-20. PubMed ID: 25437369 [TBL] [Abstract][Full Text] [Related]
19. A WS2 nanosheet based sensing platform for highly sensitive detection of T4 polynucleotide kinase and its inhibitors. Ge J; Tang LJ; Xi Q; Li XP; Yu RQ; Jiang JH; Chu X Nanoscale; 2014 Jun; 6(12):6866-72. PubMed ID: 24830570 [TBL] [Abstract][Full Text] [Related]
20. Highly specific fluorescence detection of T4 polynucleotide kinase activity via photo-induced electron transfer. Tao M; Shi Z; Cheng R; Zhang J; Li B; Jin Y Anal Biochem; 2015 Sep; 485():18-24. PubMed ID: 26050629 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]