These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30712200)

  • 1. Optimization of physical parameters for enhanced production of lipase from Staphylococcus hominis using response surface methodology.
    Behera AR; Veluppal A; Dutta K
    Environ Sci Pollut Res Int; 2019 Nov; 26(33):34277-34284. PubMed ID: 30712200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new thermostable and organic solvent-tolerant lipase from Staphylococcus warneri; optimization of media and production conditions using statistical methods.
    Yele VU; Desai K
    Appl Biochem Biotechnol; 2015 Jan; 175(2):855-69. PubMed ID: 25344436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Lipase Production by Enterococcus faecium MTCC 5695 and Pediococcus acidilactici MTCC 11361 Using Fish Waste as Substrate: Optimization of Culture Conditions by Response Surface Methodology.
    Ramakrishnan V; Goveas LC; Narayan B; Halami PM
    ISRN Biotechnol; 2013; 2013():980562. PubMed ID: 25969788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of anti-tubercular activity and biomass of fermented food associated Staphylococcus hominis strain MANF2 using Taguchi orthogonal array and Box-Behnken design.
    Khusro A; Aarti C; Dusthackeer A; Agastian P
    Microb Pathog; 2018 Jul; 120():8-18. PubMed ID: 29665438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical medium optimization and production of a hyperthermostable lipase from Burkholderia cepacia in a bioreactor.
    Rathi P; Goswami VK; Sahai V; Gupta R
    J Appl Microbiol; 2002; 93(6):930-6. PubMed ID: 12452948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimization of extracellular lipase production by halotolerant
    Balaji L; Chittoor JT; Jayaraman G
    Prep Biochem Biotechnol; 2020; 50(7):708-716. PubMed ID: 32134356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of Aeribacillus pallidus strain VP3 lipase catalytic activity through optimization of medium composition using Box-Behnken design and its application in detergent formulations.
    Ktata A; Karray A; Mnif I; Bezzine S
    Environ Sci Pollut Res Int; 2020 Apr; 27(11):12755-12766. PubMed ID: 32006338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pretreatment of coconut mill effluent using celite-immobilized hydrolytic enzyme preparation from Staphylococcus pasteuri and its impact on anaerobic digestion.
    Kanmani P; Kumaresan K; Aravind J
    Biotechnol Prog; 2015; 31(5):1249-58. PubMed ID: 26033963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of process parameters influencing the submerged fermentation of extracellular lipases from Pseudomonas aeruginosa, candida albicans and Aspergillus flavus.
    Padhiar J; Das A; Bhattacharya S
    Pak J Biol Sci; 2011 Nov; 14(22):1011-8. PubMed ID: 22514878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on optimization of process parameters for enhancing the multi-hydrolytic enzyme activity in garbage enzyme produced from preconsumer organic waste.
    Arun C; Sivashanmugam P
    Bioresour Technol; 2017 Feb; 226():200-210. PubMed ID: 28002780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surfactant enhanced ricinoleic acid production using Candida rugosa lipase.
    Goswami D; Sen R; Basu JK; De S
    Bioresour Technol; 2010 Jan; 101(1):6-13. PubMed ID: 19717301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced halophilic lipase secretion by Marinobacter litoralis SW-45 and its potential fatty acid esters release.
    Musa H; Hafiz Kasim F; Nagoor Gunny AA; Gopinath SCB; Azmier Ahmad M
    J Basic Microbiol; 2019 Jan; 59(1):87-100. PubMed ID: 30270443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of thermostable lipase production by a genotypically identified extremophilic Bacillus subtilis NS 8 in a continuous bioreactor.
    Olusesan AT; Azura LK; Abubakar F; Mohamed AK; Radu S; Manap MY; Saari N
    J Mol Microbiol Biotechnol; 2011 Apr; 20(2):105-15. PubMed ID: 21422764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Process optimization for production and purification of a thermostable, organic solvent tolerant lipase from Acinetobacter sp. AU07.
    Gururaj P; Ramalingam S; Nandhini Devi G; Gautam P
    Braz J Microbiol; 2016; 47(3):647-57. PubMed ID: 27268114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of evolutionary operation (EVOP) factorial design technique to develop a bioprocess using grease waste as a substrate for lipase production.
    Kumar S; Katiyar N; Ingle P; Negi S
    Bioresour Technol; 2011 Apr; 102(7):4909-12. PubMed ID: 21292479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical optimization for lipase production from solid waste of vegetable oil industry.
    Sahoo RK; Kumar M; Mohanty S; Sawyer M; Rahman PKSM; Sukla LB; Subudhi E
    Prep Biochem Biotechnol; 2018 Apr; 48(4):321-326. PubMed ID: 29424632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of physical parameters for lipase production from Arthrobacter sp. BGCC#490.
    Sharma A; Bardhan D; Patel R
    Indian J Biochem Biophys; 2009 Apr; 46(2):178-83. PubMed ID: 19517996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of olive-mill wastewater as a growth medium for lipase production by Candida cylindracea in bench-top reactor.
    Brozzoli V; Crognale S; Sampedro I; Federici F; D'Annibale A; Petruccioli M
    Bioresour Technol; 2009 Jul; 100(13):3395-402. PubMed ID: 19303284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of lipase producing thermophilic bacteria: optimization of production and reaction conditions for lipase from Geobacillus sp.
    Mehta A; Kumar R; Gupta R
    Acta Microbiol Immunol Hung; 2012 Dec; 59(4):435-50. PubMed ID: 23195552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Symbiotic effects of a lipase-secreting bacterium, Burkholderia arboris SL1B1, and a glycerol-assimilating yeast, Candida cylindracea SL1B2, on triacylglycerol degradation.
    Matsuoka H; Miura A; Hori K
    J Biosci Bioeng; 2009 Apr; 107(4):401-8. PubMed ID: 19332299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.