These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 3071237)

  • 21. [The significance of wear and material fatigue in loosening of hip prostheses].
    Willert HG; Buchhorn GH; Hess T
    Orthopade; 1989 Sep; 18(5):350-69. PubMed ID: 2682455
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methotrexate loaded acrylic cement in the management of skeletal metastases. Biomechanical, biological, and systemic effect.
    Wang HM; Galasko CS; Crank S; Oliver G; Ward CA
    Clin Orthop Relat Res; 1995 Mar; (312):173-86. PubMed ID: 7634601
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Acrylic bone cement use for internal spondylodesis in neurosurgical operations].
    Jankowski R; Nowak S; Zukiel R; Sokół B
    Neurol Neurochir Pol; 2001; 35(6):1081-91. PubMed ID: 11987704
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Experimental studies on the tissue response to methylmethacrylate implants in dogs].
    Lee SI; Kim JW
    Taehan Chikkwa Uisa Hyophoe Chi; 1987 Oct; 25(10):953-62. PubMed ID: 3316454
    [No Abstract]   [Full Text] [Related]  

  • 25. The influence of temperature and specimen size on the flexural properties of PMMA bone cement.
    Brown SA; Bargar WL
    J Biomed Mater Res; 1984; 18(5):523-36. PubMed ID: 6376514
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Torque test measurement in segmental bone defects using porous calcium phosphate cement implants.
    Kroese-Deutman HC; Wolke JG; Spauwen PH; Jansen JA
    Tissue Eng Part C Methods; 2010 Oct; 16(5):1051-8. PubMed ID: 20070174
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heat generation and heat protection in methylmethacrylate cementation of vertebral bodies. A cadaver study evaluating different clinical possibilities of dural protection from heat during cement curing.
    Toksvig-Larsen S; Johnsson R; Strömqvist B
    Eur Spine J; 1995; 4(1):15-7. PubMed ID: 7749900
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biomechanical assessment of a new adhesive bone cement for otologic surgery.
    Werning JW; Maniglia AJ; Anderson JM
    Am J Otol; 1995 May; 16(3):269-76. PubMed ID: 8588618
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Removal torque for bone-cement and titanium screws implanted in rabbits.
    Morberg P; Albrektsson T
    Acta Orthop Scand; 1991 Dec; 62(6):554-6. PubMed ID: 1767647
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stiffness and inelastic deformation in acrylictitanium composite implant materials under compression.
    Schnur DS; Lee D
    J Biomed Mater Res; 1983 Nov; 17(6):973-91. PubMed ID: 6654934
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative fatigue behavior of different bone cements.
    Gates EI; Carter DR; Harris WH
    Clin Orthop Relat Res; 1984 Oct; (189):294-9. PubMed ID: 6478701
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Osseous penetration rate into implants pretreated with bone cement.
    Albrektsson T
    Arch Orthop Trauma Surg (1978); 1984; 102(3):141-7. PubMed ID: 6703869
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rheology of acrylic bone cements.
    Ferracane JL; Greener EH
    Biomater Med Devices Artif Organs; 1981; 9(3):213-24. PubMed ID: 7347243
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Release of gentamicin from acrylic bone cement. Elution and diffusion studies.
    Baker AS; Greenham LW
    J Bone Joint Surg Am; 1988 Dec; 70(10):1551-7. PubMed ID: 3198680
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Radiopaque acrylic cements prepared with a new acrylic derivative of iodo-quinoline.
    Vázquez B; Ginebra MP; Gil FJ; Planell JA; López Bravo A; San Román J
    Biomaterials; 1999 Nov; 20(21):2047-53. PubMed ID: 10535816
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of preparation techniques on the porosity of acrylic cements.
    Schreurs BW; Spierings PT; Huiskes R; Slooff TJ
    Acta Orthop Scand; 1988 Aug; 59(4):403-9. PubMed ID: 3421077
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo versus in vitro polymerization of acrylic bone cement: effect on material properties.
    Bargar WL; Brown SA; Paul HA; Voegli T; Hseih Y; Sharkey N
    J Orthop Res; 1986; 4(1):86-9. PubMed ID: 3950811
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of heparin-surface-modification on scar-tissue formation around a subconjunctival polymethylmethacrylate implant in the rabbit.
    Kivalo M
    Acta Ophthalmol Scand; 1997 Apr; 75(2):189-93. PubMed ID: 9197571
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Long-term biocompatibility and osseointegration of electron beam melted, free-form-fabricated solid and porous titanium alloy: experimental studies in sheep.
    Palmquist A; Snis A; Emanuelsson L; Browne M; Thomsen P
    J Biomater Appl; 2013 May; 27(8):1003-16. PubMed ID: 22207608
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Adhesive strength of metal/bone cement compounds and bone cement/spongioid bones].
    Klumpert R; Pauly T; Grootenboer HJ
    Aktuelle Probl Chir Orthop; 1987; 31():125-8. PubMed ID: 2888331
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.