These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 30712460)
21. The expression of Fhit protein is related inversely to disease progression in patients with breast carcinoma. Gatalica Z; Lele SM; Rampy BA; Norris BA Cancer; 2000 Mar; 88(6):1378-83. PubMed ID: 10717620 [TBL] [Abstract][Full Text] [Related]
22. Profiling differential microRNA expression between in situ, infiltrative and lympho-vascular space invasive breast cancer: a pilot study. Soon PS; Provan PJ; Kim E; Pathmanathan N; Graham D; Clarke CL; Balleine RL Clin Exp Metastasis; 2018 Feb; 35(1-2):3-13. PubMed ID: 29214365 [TBL] [Abstract][Full Text] [Related]
23. The microRNA-205-5p is correlated to metastatic potential of 21T series: A breast cancer progression model. Stankevicins L; Barat A; Dessen P; Vassetzky Y; de Moura Gallo CV PLoS One; 2017; 12(3):e0173756. PubMed ID: 28346474 [TBL] [Abstract][Full Text] [Related]
24. New method to predict DCIS recurrence. Printz C Cancer; 2013 Nov; 119(22):3899. PubMed ID: 24590902 [No Abstract] [Full Text] [Related]
25. Breast cancer signatures for invasiveness and prognosis defined by deep sequencing of microRNA. Volinia S; Galasso M; Sana ME; Wise TF; Palatini J; Huebner K; Croce CM Proc Natl Acad Sci U S A; 2012 Feb; 109(8):3024-9. PubMed ID: 22315424 [TBL] [Abstract][Full Text] [Related]
26. High levels of allele loss at the FHIT and ATM genes in non-comedo ductal carcinoma in situ and grade I tubular invasive breast cancers. Man S; Ellis IO; Sibbering M; Blamey RW; Brook JD Cancer Res; 1996 Dec; 56(23):5484-9. PubMed ID: 8968105 [TBL] [Abstract][Full Text] [Related]
27. Analysis of the Transcriptome: Regulation of Cancer Stemness in Breast Ductal Carcinoma Shan NL; Minden A; Furmanski P; Bak MJ; Cai L; Wernyj R; Sargsyan D; Cheng D; Wu R; Kuo HD; Li SN; Fang M; Maehr H; Kong AN; Suh N Cancer Prev Res (Phila); 2020 Aug; 13(8):673-686. PubMed ID: 32467291 [TBL] [Abstract][Full Text] [Related]
28. The transcriptional regulator TBX3 promotes progression from non-invasive to invasive breast cancer. Krstic M; Macmillan CD; Leong HS; Clifford AG; Souter LH; Dales DW; Postenka CO; Chambers AF; Tuck AB BMC Cancer; 2016 Aug; 16(1):671. PubMed ID: 27553211 [TBL] [Abstract][Full Text] [Related]
29. Amplification of Her-2/neu gene in Her-2/neu-overexpressing and -nonexpressing breast carcinomas and their synchronous benign, premalignant, and metastatic lesions detected by FISH in archival material. Xu R; Perle MA; Inghirami G; Chan W; Delgado Y; Feiner H Mod Pathol; 2002 Feb; 15(2):116-24. PubMed ID: 11850540 [TBL] [Abstract][Full Text] [Related]
30. Comparative genomic hybridization of ductal carcinoma in situ of the breast-evidence of multiple genetic pathways. Buerger H; Otterbach F; Simon R; Poremba C; Diallo R; Decker T; Riethdorf L; Brinkschmidt C; Dockhorn-Dworniczak B; Boecker W J Pathol; 1999 Mar; 187(4):396-402. PubMed ID: 10398097 [TBL] [Abstract][Full Text] [Related]
31. Scientists show that invasive breast cancer develops from early cancer cells. Holzman D J Natl Cancer Inst; 1995 May; 87(10):710-1. PubMed ID: 7563144 [No Abstract] [Full Text] [Related]
33. Loss of heterozygosity in ductal carcinoma in situ of the breast. Stratton MR; Collins N; Lakhani SR; Sloane JP J Pathol; 1995 Feb; 175(2):195-201. PubMed ID: 7738715 [TBL] [Abstract][Full Text] [Related]
34. Accumulation of chromosomal imbalances from intraductal proliferative lesions to adjacent in situ and invasive ductal breast cancer. Aubele MM; Cummings MC; Mattis AE; Zitzelsberger HF; Walch AK; Kremer M; Höfler H; Werner M Diagn Mol Pathol; 2000 Mar; 9(1):14-9. PubMed ID: 10718208 [TBL] [Abstract][Full Text] [Related]
35. Quantitative study of ductal breast cancer progression. A progression index (P.I.) for premalignant lesions and in situ carcinoma. Mariuzzi GM; Mariuzzi L; Mombello A; Santinelli A; Valli M; Rahal D; Thompson D; Bartels PH Pathol Res Pract; 1996 May; 192(5):428-36. PubMed ID: 8832747 [TBL] [Abstract][Full Text] [Related]
36. Molecular evidence for progression of microglandular adenosis (MGA) to invasive carcinoma. Shin SJ; Simpson PT; Da Silva L; Jayanthan J; Reid L; Lakhani SR; Rosen PP Am J Surg Pathol; 2009 Apr; 33(4):496-504. PubMed ID: 19047897 [TBL] [Abstract][Full Text] [Related]
37. Heterogeneous expression of nm23 gene product in noninvasive breast carcinoma. Simpson JF; O'Malley F; Dupont WD; Page DL Cancer; 1994 May; 73(9):2352-8. PubMed ID: 7513249 [TBL] [Abstract][Full Text] [Related]
38. Breaking down barriers: the importance of the stromal microenvironment in acquiring invasiveness in young women's breast cancer. Schedin P; Borges V Breast Cancer Res; 2009; 11(2):102. PubMed ID: 19344495 [TBL] [Abstract][Full Text] [Related]
39. Navigating treatment controversies for DCIS in the era of genomic profiling and active surveillance trials. Kuerer HM Eur J Surg Oncol; 2018 Apr; 44(4):386-387. PubMed ID: 29398321 [No Abstract] [Full Text] [Related]
40. A SAGE (serial analysis of gene expression) view of breast tumor progression. Porter DA; Krop IE; Nasser S; Sgroi D; Kaelin CM; Marks JR; Riggins G; Polyak K Cancer Res; 2001 Aug; 61(15):5697-702. PubMed ID: 11479200 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]