These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30712673)

  • 1. Cross Talk Networks of Mammalian Target of Rapamycin Signaling With the Ubiquitin Proteasome System and Their Clinical Implications in Multiple Myeloma.
    Eichner R; Fernández-Sáiz V; Targosz BS; Bassermann F
    Int Rev Cell Mol Biol; 2019; 343():219-297. PubMed ID: 30712673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting the ubiquitin proteasome system in haematological malignancies.
    Crawford LJ; Irvine AE
    Blood Rev; 2013 Nov; 27(6):297-304. PubMed ID: 24183816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PI3K/AKT/mTOR pathway in multiple myeloma: from basic biology to clinical promise.
    Ramakrishnan V; Kumar S
    Leuk Lymphoma; 2018 Nov; 59(11):2524-2534. PubMed ID: 29322846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Therapeutic strategies within the ubiquitin proteasome system.
    Eldridge AG; O'Brien T
    Cell Death Differ; 2010 Jan; 17(1):4-13. PubMed ID: 19557013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel strategies to target the ubiquitin proteasome system in multiple myeloma.
    Lub S; Maes K; Menu E; De Bruyne E; Vanderkerken K; Van Valckenborgh E
    Oncotarget; 2016 Feb; 7(6):6521-37. PubMed ID: 26695547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapamycin regulates Akt and ERK phosphorylation through mTORC1 and mTORC2 signaling pathways.
    Chen XG; Liu F; Song XF; Wang ZH; Dong ZQ; Hu ZQ; Lan RZ; Guan W; Zhou TG; Xu XM; Lei H; Ye ZQ; Peng EJ; Du LH; Zhuang QY
    Mol Carcinog; 2010 Jun; 49(6):603-10. PubMed ID: 20512842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting the UPS as therapy in multiple myeloma.
    Chauhan D; Bianchi G; Anderson KC
    BMC Biochem; 2008 Oct; 9 Suppl 1(Suppl 1):S1. PubMed ID: 19007431
    [TBL] [Abstract][Full Text] [Related]  

  • 8. mTOR inhibition activates overall protein degradation by the ubiquitin proteasome system as well as by autophagy.
    Zhao J; Zhai B; Gygi SP; Goldberg AL
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15790-7. PubMed ID: 26669439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Farnesyltransferase inhibitors and rapamycin in the treatment of multiple myeloma.
    Zangari M; Cavallo F; Tricot G
    Curr Pharm Biotechnol; 2006 Dec; 7(6):449-53. PubMed ID: 17168661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced sensitivity of multiple myeloma cells containing PTEN mutations to CCI-779.
    Shi Y; Gera J; Hu L; Hsu JH; Bookstein R; Li W; Lichtenstein A
    Cancer Res; 2002 Sep; 62(17):5027-34. PubMed ID: 12208757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mammalian target of rapamycin: discovery of rapamycin reveals a signaling pathway important for normal and cancer cell growth.
    Gibbons JJ; Abraham RT; Yu K
    Semin Oncol; 2009 Dec; 36 Suppl 3():S3-S17. PubMed ID: 19963098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of mTORC1 and mTORC2 in regulation of glioblastoma multiforme growth and motility.
    Gulati N; Karsy M; Albert L; Murali R; Jhanwar-Uniyal M
    Int J Oncol; 2009 Oct; 35(4):731-40. PubMed ID: 19724909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct signaling mechanisms of mTORC1 and mTORC2 in glioblastoma multiforme: a tale of two complexes.
    Jhanwar-Uniyal M; Gillick JL; Neil J; Tobias M; Thwing ZE; Murali R
    Adv Biol Regul; 2015 Jan; 57():64-74. PubMed ID: 25442674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mammalian target of rapamycin signaling and ubiquitin proteasome-related gene expression in 3 different skeletal muscles of colostrum- versus formula-fed calves.
    Sadri H; Steinhoff-Wagner J; Hammon HM; Bruckmaier RM; Görs S; Sauerwein H
    J Dairy Sci; 2017 Nov; 100(11):9428-9441. PubMed ID: 28918148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting the ubiquitin+proteasome system in solid tumors.
    Driscoll JJ; Woodle ES
    Semin Hematol; 2012 Jul; 49(3):277-83. PubMed ID: 22726552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging small molecule approaches to enhance the antimyeloma benefit of proteasome inhibitors.
    Driscoll JJ; Brailey M
    Cancer Metastasis Rev; 2017 Dec; 36(4):585-598. PubMed ID: 29052093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ubiquitin and cancer: from molecular targets and mechanisms to the clinic -- AACR Special Conference.
    Colland F
    IDrugs; 2006 Mar; 9(3):179-81. PubMed ID: 16523381
    [No Abstract]   [Full Text] [Related]  

  • 18. Biologic impact of proteasome inhibition in multiple myeloma cells--from the aspects of preclinical studies.
    Hideshima T; Anderson KC
    Semin Hematol; 2012 Jul; 49(3):223-7. PubMed ID: 22726545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The proteasome: mechanisms of biology and markers of activity and response to treatment in multiple myeloma.
    Manasanch EE; Korde N; Zingone A; Tageja N; Fernandez de Larrea C; Bhutani M; Wu P; Roschewski M; Landgren O
    Leuk Lymphoma; 2014 Aug; 55(8):1707-14. PubMed ID: 24261677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting mTOR signaling pathways in multiple myeloma: biology and implication for therapy.
    Wang Y; Vandewalle N; De Veirman K; Vanderkerken K; Menu E; De Bruyne E
    Cell Commun Signal; 2024 Jun; 22(1):320. PubMed ID: 38862983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.